СОДЕРЖАНИЕ
АВТОМАТИЗАЦИЯ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИХ И ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ
Фомин А.А., Янишевская А.Г., Шевцов С.С. Разработка алгоритма расчёта толщины стенки технологических трубопроводов ... 3
Бурикин В.В. Осушка воздуха охлаждением для систем пневмоавтоматики и силовых пневматических приложений ... 6
Раднаева В.Д., Советкин Н.В., Поломошных С.П. Жидкостные процессы кожевенного и мезового производств как объекты автоматизации ... 11
Шевцов А.А., Острикова Е.А. Управление ресурсосберегающей технологией обжарки зёрен кофе ... 15
СОВРЕМЕННЫЕ ТЕХНОЛОГИИ
Ухов В.И. Замещение данных в системах диспетчерского управления электрическими сетями ... 19
Шишкин В.В. Концептуальная модель и методология построения унифицированных средств контроля радиоэлектронного оборудования ... 23
Чернышов Н.Г., Белоусов О.А. Система управления удалёнными динамическими объектами с использованием принципов когнитивной графики .. 28
Мартынов Г.М., Козак Н.В., Нежметдинов Р.А. Специфика построения панелей управления систем ЧПУ по типу универсальных програмно-аппаратных компонентов .. 34
ЭКОНОМИКА И ОРГАНИЗАЦИЯ НАУЧНОЙ И ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ
Солдатов А.А. Агенты — помощники покупателя в приложении электронной коммерции .. 41
БУДУЩЕЕ ПЕРИОДИЧЕСКОЙ ПЕЧАТИ
По страницам журналов ... 46
Выставки и презентации
NXP выпустила микросхему контроллера светодиодов с регулировкой мощности SSL2103 для создания энергосберегающих осветительных систем 45
Обзор периодической печати
Перечень материалов из журнала «Автоматизация и современные технологии» возможна при обязательном письменном согласии редакции журнала. Перепечатка материалов ссылка на журнал «Автоматизация и современные технологии» обязательна. За содержание рекламных материалов ответственность несёт рекламодатель
ООО «Издательство Машиностроение», «Автоматизация и современные технологии», 2010 г.
РАЗРАБОТКА АЛГОРИТМА РАСЧЁТА ТОЛЩИНЫ СТЕНКИ ТЕХНОЛОГИЧЕСКИХ ТРУБОПРОВОДОВ

Предложен алгоритм расчёта толщины стенки технологических трубопроводов, работающих при низком давлении. На основании нескольких отраслевых нормативных документов сформулированы основные позиции и описаны основные шаги, что делает данный алгоритм альтернативным при выполнении такого расчёта.

Ключевые слова: алгоритм, толщина стенки, технологические трубопроводы.

Key words: algorithm, wall thickness, technological pipelines.

Технологические трубопроводы являются неотъемлемой частью процесса проектирования на предприятиях нефтехимической промышленности. Они подразделяются на трубопроводы низкого давления, высокого давления и вакуумные.

В процессе проектирования технологических трубопроводов на предприятиях нефтехимической промышленности необходимо осуществлять расчёт толщины стенки трубопровода. Алгоритм расчёта толщины стенки разработан в соответствии со стандартом СТП 09-04-02 (001-斯特ат/А), в котором представлен переработанный расчёт толщины стенки технологических трубопроводов из РТМ 38.001-94. Однако в этом стандарте много неточностей, поэтому его необходимо использовать совместно с другими нормативными документами, в частности с документом СА 03-003-07 «Расчёты на прочность и вибрацию стальных технологических трубопроводов».

Предлагается следующий алгоритм расчёта толщины стенки технологического трубопровода, работающего под низким давлением (см. рисунок).

Шаг 1. Вводятся начальные параметры участка трубопровода, необходимые для расчёта толщины стенки: рабочая температура (Tрав, °C), рабочее давление (Prab, МПа), условный диаметр (D, мм). Введённые начальные условия должны соответствовать приведённым условиям по СТП 09-04-02 (001-斯特ат/А) и СА 03-003-07: −70 < Tрав < +700 °C; 0,1 < Prab < 10 МПа (данные стандарты не рассчитаны на трубопроводы пара и горячей воды).

Шаг 2. Выбирается среда в соответствии с нормативными документами РТМ 26-02-54-80, РТМ 26-02-42-78, РТМ 26-02-39-84, тип и марка стали. Если по нормативным документам нет рекомендованных марок стали, то следует выбирать плавкую сталь для трубы: легированную (аустенитную), низколегированную, углеродистую.

Шаг 3. Определяется класс трубопровода — высокотемпературный или среднетемпературный.

К высокотемпературным относятся трубопроводы:
- из углеродистой или низколегированной стали при рабочей температуре выше 370 °C (Tрас > 370 °C);
- из легированной аустенитной стали при рабочей температуре выше 450 °C (Tрас > 450 °C).

К среднотемпературным относятся трубопроводы:
- из углеродистой и низколегированной стали при рабочей температуре не выше 370 °C (Tрас ≤ 370 °C);
- из легированной аустенитной стали при рабочей температуре не выше 450 °C (Tрас ≤ 450 °C).

После определения класса трубопровода необходимо выбрать тип трубы: бесшовные, электросварные.
Шаг 4. Выбирается предполагаемый наружный диаметр труб в соответствии с условным диаметром трубы по ГОСТ 28338–89.
Для расчёта выбирается допускаемое напряжение σ при следующих условиях: для бесшовных труб по таблицам РФ 10–249–98, для электросварных труб по таблицам ГОСТ 14249–89.
Если значение допускаемого напряжения отсутствует в нормативных документах, то необходимо провести его расчёт. Для этого из нормативных документов следует выбрать следующие величины: внутреннее расчётное давление R_m, внутреннее допустимое давление R_p, внутреннее рабочее давление $R_{0.2}$ и внутреннее условное давление $R_{1.0}$, временно сопротивление, предел текучести и условный предел текучести при расчётной температуре, пределы длительной прочности $R_{m/10^5}$ и ползучести при расчётной температуре $R_{1.0/10^5}$, рабочую температуру трубопровода $T_{раб}$, допускаемое напряжение при расчётной температуре.
Далее рассчитывается допускаемое напряжение $σ$:
- для углеродистых и низколегированных сталей
 $σ = \min \left[\frac{R_p}{n_t}, \frac{R_{0.2}}{n_t}, \frac{R_m}{n_d}, \frac{R_{m/10^5}}{n_n}, \frac{R_{1.0/10^5}}{n_n} \right]$; (1)
- для аустенистых легированных сталей
 $σ = \min \left[\frac{R_{1.0}}{n_t}, \frac{R_m}{n_d}, \frac{R_{m/10^5}}{n_n}, \frac{R_{1.0/10^5}}{n_n} \right]$, (2)
где n_t, n_d, n_n – коэффициенты запаса по временному сопротивлению, пределам текучести, длительной прочности и ползучести соответственно;
Условный предел текучести определяется с учётом остаточной деформации:
- для углеродистых и низколегированных сталей $R_{0.2} − 0.2 \%$;
- для аустенистых легированных сталей $R_{0.1} − 1.0 \%$.
При определении допускаемых напряжений для среднетемпературных трубопроводов характеристики длительной прочности $R_{m/10^5}$ и $R_{1.0/10^5}$ не используются в формулах (1) и (2), а остаются только два первых члена в квадратных скобках.
Значения коэффициентов запаса по временному сопротивлению, пределу текучести, длительной прочности и ползучести берутся из нормативных документов:
- $n_t = n_d = 1.5$; $n_n = 2.4$; $n_n = 1.0$.

Алгоритм расчёта толщины стенки технологических трубопроводов
Шар 5. Выполняется расчёт коэффициента прочности.
При расчёте элементов учитывается коэффициент снижения прочности, который представляет собой наименьшую величину из двух значений \(\varphi_y \) и \(\varphi_y' \):

\[\varphi = \min[\varphi_y, \varphi_y'], \]

где \(\varphi_y \) — коэффициент снижения прочности элемента со сварным швом при расчёте на внутреннее давление; \(\varphi_y' \) — коэффициент снижения прочности поперечного сварного шва при расчёте на действие изгибающих моментов и продольной силы.

Коэффициент \(\varphi_y \) при контроле шва радиографией или ультразвуком по всей длине шва принимается по табл. 1.

При расчётной температуре от 510 до 530 °C значение коэффициента определяется линейным интерполированием между указанными значениями. При расчёте бесшовных труб и деталей коэффициент снижения прочности равен единице.

Шар 6. Коэффициент прочности поперечного сварного стыка труб и деталей при изгибе \(\varphi_y \) определяется по табл. 2.

При расчётной температуре от 510 до 530 °C значение коэффициента определяется линейным интерполированием между указанными значениями.

Шар 7. Определяется расчётная толщина стенки труб:

\[t_R = \frac{PD}{2\sigma_y + P}, \]

где \(D \) — наружный диаметр трубы или детали, мм.

Расчёт общей прибавки к толщине стенки выполняется по формуле

\[C = C_1 + vN, \]

где \(C_1 \) — технологическая прибавка, равная минусовому отклонению толщины стенки по стандартам и техническим условиям на трубы; \(v \) — скорость коррозии; \(N \) — срок службы трубопровода.

Таблица 1

<table>
<thead>
<tr>
<th>Сталь и способ сварки</th>
<th>(\varphi_y) при расчётной температуре</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>510 °C и не менее</td>
</tr>
<tr>
<td>Углеродистая, низколегированная, марганцовистая, хромомolibденовая и аустенитная при любом способе сварки</td>
<td>1,0</td>
</tr>
<tr>
<td>Хромомolibденовая/высокохромистая: при электрошлиаковой сварке</td>
<td>1,0</td>
</tr>
<tr>
<td>при электро-дуговой сварке</td>
<td>1,0</td>
</tr>
<tr>
<td>при ручной дуговой сварке, автоматической стыковой сварке под флюсом</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Таблица 2

<table>
<thead>
<tr>
<th>Сталь</th>
<th>(\varphi_y) при изгибе</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>бесшовных</td>
</tr>
<tr>
<td>Аустенитная хромоникелевая и высокохромистая</td>
<td>0,6</td>
</tr>
<tr>
<td>Хромомolibденовая при расчётной температуре: 510 °C и менее</td>
<td>0,9</td>
</tr>
<tr>
<td>530 °C и более</td>
<td>0,6</td>
</tr>
<tr>
<td>Углеродистая, марганцовистая и хромомolibденовая</td>
<td>0,9</td>
</tr>
</tbody>
</table>
Скорость коррозии определяется в соответствии с РТМ 26-02-54-80, РТМ 26-02-42-78, РТМ 26-02-39-84 или отраслевыми документами с учётом расчётного срока эксплуатации.

Шаг 8. Расчётное значение толщины стенки проверяется согласно условию \(\frac{t_B}{D} \leq 0,2 \).

Если данное условие выполняется, то рассчитывается номинальная толщина стенки, а если нет – расчёт прекращается в связи с невозможностью использования этого трубопровода.

Шаг 9. Вычисляется номинальная толщина стенки элемента с учётом условия \(t \geq t_B + C \). Допускается округление в сторону меньшей толщины стенки элемента, где разница не должна превышать 3 %.

Рекомендуемые значения номинальной толщины стенки (элемента трубопровода или детали трубопровода) в зависимости от наружного диаметра приведены в табл. 3.

Предлагаемый алгоритм позволит автоматизировать процесс расчёта толщины стенки технологических трубопроводов под давлением от 0,1 до 10 МПа, а его использование при проектировании технологических схем ускорит процесс формирования документации, основанной на данных расчётов.

Таблица 3

<table>
<thead>
<tr>
<th>Наружный диаметр, мм</th>
<th>≤ 25</th>
<th>≤ 57</th>
<th>≤ 114</th>
<th>≤ 219</th>
<th>≤ 325</th>
<th>≤ 377</th>
<th>≥ 426</th>
</tr>
</thead>
<tbody>
<tr>
<td>Минимальная толщина стенки, мм</td>
<td>1,0</td>
<td>1,5</td>
<td>2,0</td>
<td>2,5</td>
<td>3,0</td>
<td>3,5</td>
<td>4,0</td>
</tr>
</tbody>
</table>

Библиографические ссылки

2. СА 03-003-07 (СТП 09-07-03). Расчёты на прочность и вибрацию стальных технологических трубопроводов. Изд. и доп. к СТП 09-04-02(001-СТП/А). Рекомендован к использованию 27.11.06. М.: ООО «НТП Трубопровод», 2006. 72 с.

УДК 697.931

В.В. Буренин, канд. техн. наук, проф.
(Московский автомобильно-дорожный институт (ГТУ))
st@tu.madi.ru

ОСУШКА ВОЗДУХА ОХЛАЖДЕНИЕМ ДЛЯ СИСТЕМ ПНЕВМОАВТОМАТИКИ И СИЛОВЫХ ПНЕВМАТИЧЕСКИХ ПРИВОДОВ

Рассмотрены новые конструкции установок для осушки сжатого воздуха охлаждением, отличающиеся улучшенными характеристиками. Конструктивные усовершенствования установок, осушающих воздух для систем пневмоавтоматики и силовых пневматических приводов, направлены на повышение степени осушки воздуха и надёжности работы, снижение габаритных размеров и массы, удобство эксплуатации и т. д.

Ключевые слова: влагоотделитель, сухость воздуха, пневматические системы управления.

New facilities structures for air draining by cooling features better behaviors are considered. Constructive improvements of the facilities draining air for pneumatic systems and power pneumatic drives are directed to increase air draining degree and work reliability, to decrease overall measurement and mass, to increase exploitation comfort and etc.

Key words: moisture separator, air dryness, pneumatic control systems.

Системы пневмоавтоматики (пневматические системы управления) и силовые пневматические приводы (силовые пневматические системы) являются эффективными средствами автоматизации и механизации производственных процессов в различных отраслях техники [1].

Высокие требования к техническому уровню современных машин, механизмов, агрегатов и технологических процессов, к качеству комплектующего оборудования обусловили необходимость повышения технических параметров и эксплуатационных характеристик пневматических
систем, таких как долговечность, энергетические затраты, степень вредного воздействия на окружающую среду.

Эффективная реализация характеристик пневматических систем при эксплуатации невозможна без качественной очистки сжатого воздуха (основного рабочего тела систем) от механических и пластических частиц загрязнений, а также влаги [2].

Осушика воздуха (газов) охлаждением — широко применяемый в промышленности метод, основанный на том, что количество влаги в виде пара, содержащегося в насыщенном воздухе, резко уменьшается при понижении температуры. Поэтому при охлаждении воздух становится насыщенным, и часть влаги, равна разности между действительным содержанием её в воздухе и содержанием, соответствующим насыщению воздуха при данной после охлаждения температуре и давлении, выпадает в виде жидкости, которая отводится в конденсаторобиорники.

В последние годы проводятся теоретические и экспериментальные исследования, на основании которых разработаны, запатентованы и выпускаются новые конструкции устройств, осушающих воздух охлаждением и отличающихся улучшенными характеристиками.

Высокое качество осушки больших потоков воздуха после основного компрессора I (рис. 1) обеспечивает воздухоосушитель [3], содержащий дополнительный компрессор 11 с рабочим давлением воздуха более высоким, чем в основном компрессоре.

Сжатый воздух после основного компрессора охлаждается в теплообменнике (холодильнике) 2 типа «воздух—воздух» и поступает в смеситель 3. Сюда же через теплообменник (холодильник) 9 типа «воздух—жидкость» и регулирующий вентиль 8 поступает сжатый воздух от дополнительного компрессора с входным 12 и выходным 10 патрубками, имеющего давление более высокое, чем в основном компрессоре. Например, основной компрессор имеет стандартное рабочее давление 0,6 МПа (типовое давление воздуха, подаваемого в обычные заводские пневмосистемы), а дополнительный компрессор — 3,0 МПа. Пройдя через регулирующий вентиль, воздух высокого давления, охлаждённый в теплообменнике, дросселируется с давления 3,0 МПа до 0,6 МПа и охлаждается за счёт эффекта охлаждения газов при дросселировании. Смешиваясь в смесителе, воздушный поток основного компрессора охлаждается воздушным потоком дополнительного компрессора. В образовавшейся холодной смеси воздушных потоков конденсируется влага, которая отделяется во влагоотделителе 7 с входным 4 и выходным 5 патрубками. После этого осушенный воздух поступает к потребителю 6.

Надёжно и экономично в работе устройство для осушки сжатого компрессором воздуха [4]. Сжатый воздух высокой температуры после компрессора 8 (рис. 2) поступает по трубопроводу 6 в радиатор 4, где нагревает атмосферный воздух в трубе 5. Нагретый атмосферный воздух поднимается вверх по трубе 5, увлекая за собой воздух, находящийся в чехле 2 между стенками чехла и осушителя 1. На смену нагретому воздуху, выходящему по трубе 5, поступают новые порции воздуха из окружающей среды, т. е. создаётся непрерывный воздушный поток, охлаждающий теплообменник 3. Из радиатора 4 частично охлаженный
дёный сжатый воздух по трубопроводу 11 поступает в концевой холодильник 13 компрессора 8 и далее по трубопроводу 15 в осушитель. В теплообменнике 3 сжатый воздух охлаждается до температуры точки росы. Из него выпадает конденсат, который отводится, а осушенный сжатый воздух поступает по трубопроводу 16 к потребителю.

Радиатор для нагрева атмосферного воздуха в трубе 5 работает постоянно при включённом компрессоре. Теплоизводительность радиатора регулируется задвижками 7, 10 и 14, установленными соответственно на трубопроводах 6, 9, 11, 12 и 15.

Таким образом, благодаря тому, что осушитель размещается в открытом снizu чехле, имеющем вытяжную трубу с радиатором в трубе и чехле, создаются условия для охлаждения теплообменника 3 без использования вентилятора, который обычно создаёт принудительный поток охлаждающего атмосферного воздуха на теплообменник осушителя. Кроме того, в радиатор от компрессора 8 подаётся горячий сжатый воздух, поступающий до концевого холодильника 13, т. е. создаются условия для уменьшения энергетических затрат при охлаждении сжатого компрессором воздуха в концевом холодильнике.

Высокая степень осушки сжатого компрессором воздуха, поступающего во входной коллектор-влагоотделитель 2 (рис. 3) [5], достигается введением дополнительного коллектора-влагоотделителя 4. После входного коллектора-влагоотделителя сжатый воздух поступает по кольцевому пространству, образованному входными 6 и выходными 5 трубопроводами, во входной отсек А дополнительного коллектора-влагоотделителя. За счёт теплообмена с атмосферным воздухом через стенки входных и выходных трубопроводов сжатый воздух, поступающий на осушку, охлаждается ниже температуры точки росы, и из него выпадает влага в виде конденсата. Крупные капли воды за счёт гравитационных сил падают на дно входного отсека А, а мелкие уносятся потоком осушаемого воздуха вверх и по трубопроводу 3 вводятся тангенциально в выходной отсек Б дополнительного коллектора-влагоотделителя, где мелкие капли воды по стенкам отсека стекают вниз и отводятся по трубопроводам 7 для слива конденсата.

Поток осушённого воздуха направляется в выходные трубопроводы 5, открытые торцы которых расположены в средней части отсека Б, и по ним поступает в выходной коллектор 1, а затем через патрубок 8 направляется в пневмомагистраль.

Небольшими габаритными размерами и массой обладает устройство для снижения уровня влажности воздуха, подаваемого в пневматические системы [6]. Устройство содержит корпус 1 (рис. 4), внутри которого размещены осевой вентилятор 4, рекуперативный охлаждающий теплообменник типа «воздух–хладагент» 2. Ниже 15 корпуса выполнено с боковыми поверхностями, сходящимися к центральному выходному патрубку 14 для поглощённой фитилём влаги. В центральной части корпуса размещён жёсткий фитиль 6, представляющий собой стержень с основанием 11, идентичным нижней части корпуса, боковые поверхности которого примыкают к внутренним поверхностям днища корпуса. По обе стороны фитиля расположен теплообменник, выполненный в виде оребрённых с двух сторон пластин, изготовленных из материала с высоким коэффициентом теплопроводности и закрытых крышками 8 и 18 со стороны корпуса 1. Пластины, примыкающие торцами к фитилю, образуют каналы для осушаемого воздуха, поступающего в патрубок 3 и обтекающего конус 5, а пластины, примыкающие торцами к крышкам 8 и 18, образуют каналы для хладагента, поступающего по трубам 12 и 16. Между основаниями днища корпуса и фитиля размещена капиллярная сетка 13. Наружные поверхности крышок 8 и 18 и внутренние боковые поверхности корпуса снабжены дополнительными фитилями 9, 19, 10 и 17.

Конструктивное исполнение основного фитиля, основания и дополнительных фитилей исключает возможность уноса сконденсированной влаги из устройства осушённым и выходящим через патрубки 7 и 20 воздухом. Если выпавшая влага на пластинах теплообменника 2 не поглощается фитилем, то при ударе потока воздуха в

Рис. 3. Устройство для осушки сжатого воздуха с дополнительным коллектором-влагоотделителем
Рис. 4. Устройство для снижения уровня влажности воздуха с осевым вентилятором

Рис. 5. Устройство для охлаждения сжатого воздуха охлаждением с трубчатым однорядным радиатором

основание фитиля 6 за счёт действия центробежных сил влаги выделяется на поверхность основания 11 и далее за счёт действия капиллярных сил будет поглощаться основанием и откачиваться насосом через патрубок.

Удобно в эксплуатации и отличается небольшими габаритными размерами и массой устройства для охлаждения сжатого воздуха [7], содержащее входной 4 (рис. 5) и выходной 9 патрубки для сжатого воздуха, охлаждающие воздух теплообменники 1 и 2, перепускную трубу 8 с коллектором-влагаотделителем 5 и конденсатоотводчик 7. Теплообменник 2 типа «воздух—воздух» представляет собой трубчатый однорядный охлаждающий радиатор, смонтированный на раме и продуваемый атмосферным воздухом, нагнетаемым осевым вентилятором, и содержит верхний 10 и нижний 6 коллекторы. Теплообменник 1 типа «воздух—жидкость» представляет собой систему теплообменных элементов типа «труба в трубе» и соединён с теплообменником 2 верхним коллектором и перепускной трубой, в нижней части которой расположен коллектор-влагаотделитель, соединённый с теплообменником 2 и конденсатоотводчиком 7. Для уменьшения тепловых потерь нижние части коллектора-влагаотделителя и теплообменника защищены теплоизолирующими кожухом 3.

Эффективно в работе воздухоосушительное устройство [8], очищающее воздух от водоразтворимых газов (аммиака, сероводорода и т. д.). Воздух на осушку и очистку поступает через входной патрубок 2 (рис. 6) корпуса 1 в пространство между дисками ротора 3, установленного на полом валу 6. На поверхности охлаждаемых хладагента дисков ротора конденсируются пары воды, находящиеся в охлаждаемом воздухе, и растворяются в конденсате водоразтворимых газов (аммиак, сероводород и др.). Конденсат под действием центробежных сил попадает с дисков ротора на стенки корпуса и стекает через окно вывода в стенке выходного патрубка 4 в накопитель 5. Осужденный и очищенный воздух через криволинейный выходной патрубок 4 устройства направляется потребителю.

Особенностью воздухоосушительного устройства является то, что охлаждающая воздух среда (хладагент) циркулирует в кольцевой щели, образованной стенкой полого вала и коаксиально расположенным с ним полым цилиндром (на рис. 6 не показан), в торцевых стенах которого выполнены каналы, связывающие кольцевую щель с полостью вала. После охлаждения стенок полого вала, полого цилиндра и дисков ротора хладагент возвращается во внешний теплообменник-холодильник (на рис. 6 не показан).
Совершенствование установок для очистки сжатого воздуха от влаги — непрерывный процесс, являющийся составной частью технического прогресса.

Библиографические ссылки

СПРАВОЧНИК ТОКАРЯ-УНИВЕРСАЛА

В.Ф. Беззявлышный, В.Г. Моисеев, Д.Г. Белецкий и др.

Под ред. М.Г. Шеметова, В.Ф. Беззявлышного

Цена 440 р.

Изложены сведения о процессах и режимах резания, нормировании токарных работ. Приведены методы повышения производительности труда, технические характеристики оборудования, описание технологической оснастики и инструмента, данные по обработке особо сложных деталей. Приведены сведения из опыта работы отечественных и зарубежных промышленных предприятий.

Второе издание (1-е изд. 1987 г.) переработано в соответствии с современной научно-технической документацией и дополнено сведениями об обеспечении точности и управления качеством при токарной обработке. В приложении более развернуто представлен материал о повышении качества поверхности методами пластического деформирования.

Для токарей-универсалов всех отраслей промышленности, может быть полезен учащимся учреждений среднего профессионального образования.

Приобрести книгу по цене издателя можно, прислав заявку в отдел продаж, маркетинга и рекламы:

по почте: 107076, г. Москва, Строгинский пер., 4; по факсу: (499) 269-48-97; по e-mail: realiz@masb.ru

Дополнительную информацию можно получить по телефонам: (499) 269-66-00, 269-52-98 и на сайте WWW.MASHIN.RU
УДК 675.02:005.591.6

В.Д. Раднаева, канд. техн. наук, доц., Н.В. Советкин, канд. техн. наук, доц.,
С.П. Поломышных, канд. техн. наук, доц.
(Восточно-Сибирский государственный технологический университет, г. Улан-Удэ)
radnaevav@yahoo.com

ЖИДКОСТНЫЕ ПРОЦЕССЫ КОЖЕВЕННОГО И МЕХОВОГО ПРОИЗВОДСТВА КАК ОБЪЕКТЫ АВТОМАТИЗАЦИИ

Разработаны новые технологии и оборудование для жидкостных операций кожевенного и мехового производства, увеличивающие возможности автоматизации технологических процессов. Разработаны технические требования к устройствам для дубления и красильно-жировальных процессов. Сформулированы принципы создания автоматизированного кожевенного и мехового производства. Представлены схемы основных рабочих органов машин для поштучной обработки мехового и кожевенного сырья.

Ключевые слова: жидкостные процессы, поштучная обработка, кожевенное и меховое производство, новое оборудование.

New technologies and equipment for fluid operations of the tanning and fur production increasing possibility of the technological processes automation are created. Engineering objectives for facilities for tanning and tinctorial-grease processes are created. Creature principles of the automatic tanning and fur productions are formulated. Layouts of the machines basic working units for by the piece processing of the tanning and fur raw materials are introduced.

Key words: fluid processes, by the piece processing, the tanning and fur production, new equipment.

Интенсивное развитие информационных технологий, измерительных приборов и средств автоматизации производства, а также достижения в области производства новых химических материалов существенно увеличивают возможности автоматизации кожевенной и меховой отрасли, в частности, жидкостных процессов.

Основой технологии кожевенного и мехового производства является обработка шкур в водных растворах химических материалов с невысокой концентрацией, чередующаяся с механической обработкой полуфабриката на машинах проходного или непроходного типа. Процессы осуществляются в барабанах (кожевенное производство) и баркасах (меховое производство). Технологические решения, лежащие в основе жидкостных процессов, принципиально не изменялись в течение 50 лет и характеризуются:

большим расходом воды (на переработку 1 т кожевенного сырья расходуется 60–65 м³ воды);
необходимостью очистки сточных вод;

большой длительностью жидкостных процессов (например, длительность хромового дубления в производстве кож для верха обуви составляет 1–12 ч, в производстве кож для низа обуви — 48–72 ч).

Другая особенность действующих технологических способов обработки заключается в постоянном чередовании парциональных жидкостных и поштучных механических обработок сырья и полуфабриката, что требует постоянной выгрузки-загрузки в другую аппаратуру и подачи в оборудование для механической обработки. Так, в меховом производстве наблюдается более 20 чередований поштучных и парциональных обработок и более 15 перегрузок из одного аппарата в другой [1]. Поштучные обработки в кожевенном производстве составляют 64 % от общего числа манипуляций, а парциональная обработка в барабанах — 14 %.

К сложностям автоматизации жидкостных процессов относится наличие большого количества пролёжек (производство кож для верха обуви) без их учёта в сухильном отделении и отделочном цехе. Пролёжка, как технологическая операция, выполняется после дубления и красильно-жировальных процессов. Она как вынужденная операция, является результатом большой разницы в длительности парциональных жидкостных процессов и поштучных механических обработок. Так, длительность отмоки (парциональ обработка) в производстве кож для верха обувь составляет 10–12 ч, а последующего мездерения (поштучная обработка) одной единицы сырья — 1–3 мин. После поштучной обработки следует вынужденная пролёжка для комплектования производственной партии и выполнения следующего парционального процесса. Всего производится три вынужденных пролёжки (до сушки).

Следующей особенностью жидкостных процессов является многомерность объектов, т. е. наличие большого количества входных воздейст-
вий X и выходных переменных Y [2], а также необходимость корректирования параметров во время процесса (концентрации химических материалов, pH, температуры). Только на процесс пикелевания кож влияет семь переменных: температура, жидкостный коэффициент, длительность, начальная концентрация соли, начальная концентрация кислоты, частота вращения барабана, pH раствора.

Особо следует выделить проблему автоматического измерения уровня качества полуфабриката на жидкостных процессах, которые можно охарактеризовать следующим:

- все способы определения уровня качества полуфабриката относятся к разрушающим;
- методы определения уровня качества полуфабриката длительны, практически отсутствуют методы экспресс-анализа;
- контроль качества полуфабриката на многих процессах невозможно определить одним универсальным показателем (золение, дубление, пикелевание);
- в некоторых процессах уровень качества полуфабриката определяется органолептически (мягчение, крашение, жирование).

Таким образом, жидкостные процессы кожевенного и мехового производства являются сложными объектами автоматизации.

Существует два подхода к автоматизации жидкостных процессов в кожевенном и меховом производстве [2]. В соответствии с первым автоматизация осуществляется управление аппаратами во времени, т. е. существует «жесткое» программное управление приготовлением рабочих растворов (начальные концентрации, температура и т. п.), их подачей в оборудование и вращением барабанов. Если на заданном уровне фильтруются начальные условия режима (концентрация рабочего раствора, жидкостный коэффициент и т. д.), то независимо от неоднородности сырья (в пределах отобранной партии) на выходе (по окончании процесса) получается полуфабрикат с качественными показателями, отвечающими заданным параметрам. Такой подход к автоматизации возможен при условии подбора качественного сырья в производственные партии.

При втором подходе в дополнение к программному управлению аппаратами во времени и стабилизации начальных условий вводится автоматическое управление режимами обработки по принципу отрицательной обратной связи. Однако реализация этого принципа вследствие многочисленности объектов требует существенного увеличения капитальных и эксплуатационных затрат, поэтому автоматическое управление режимами обработки по принципу отрицательной связи осуществить невозможно вследствие отмеченных выше особенностей технологии обработки кожевенного и мехового сырья.

Разработаны новые технологии жидкостных процессов, основанные на поштучной обработке сырья, которые создают предпосылки для разработки технологических линий, представляющих модули определённого стандарта: транспортное средство — оборудование для выполнения технологического процесса или операции — автоматический укладчик — транспортное средство, а следовательно, увеличивается возможность автоматизации жидкостных процессов.

Перевод партийной жидкостной обработки на поштучную возможен с решением проблемы интенсификации технологических процессов. Интенсификация жидкостных процессов до длительности, сопоставимой с длительностью механических операций, выполнена с учётом применения принципиально нового оборудования и новых химических материалов, обладающих комплексом свойств [3,4].

Новые способы обработки мехового сырья разработаны для процессов пикелевания, дубления, жирования, а кожевенного сырья — для процессов дубления, жирования, крашения, наполнения. После подготовительных процессов, выполненных во вращающейся аппаратуре (баркасе), меховая овчина обрабатывается поштучно на линии (мездрение — платировка — пикелевание — дубление — жирование [5]). Процессы пикелевания, дубления и жирования выполняются на машине проходного типа, сконструированной и изготовленной на кафедре «Машины и аппараты легкой промышленности» ВСГТУ (рис. 1).

Длительность обработки единицы мехового сырья на одной жидкостной операции составляет 15–20 с. Основные рабочие органы машины — валы с кольцевыми проточками или рифлями, которые одновременно являются прижимными и транспортирующими устройствами, и вибропланка. Кольцевые проточки или рифли и последовательное расположение валов позволяют получить так называемый эффект «губки», способствующий быстрому проникновению рабочего состава внутрь кожевой ткани овчины. Обработка кожевой ткани вибропланкой способствует более глубокому и равномерному распределению рабочего состава по толщине и топографическим участкам шкуры. Эффект резкой интенсификации (от 8 – 10 ч до 15–20 с) возможен только в сочетании механического воздействия и использования специально разработанных рабочих составов. Носителем рабочих составов в машине является войлочным или синтетическим моношн, который одновременно служит и конвейёром. Эта технология внедрена на меховых предприятиях «Виктория-универсал» (г. Чита), на четырёх малых предприятиях Республики Бурятия для обработки меховой овчины и шкурок котика (пос. Согойм Камчатской области).
Поштучная обработка кожевенного полуфабриката сложнее обработки мехового полуфабриката. Сложность заключается в большей толщине и плотности дермы (3—5 мм по сравнению с 0,8—1,5 мм меховой овчины) и необходимости обработки с двух сторон — лицевой и бахтарманиной. Поэтому для поштучной обработки кожевенного полуфабриката спроектирован рабочий орган в виде гофрированной поверхности, совершающий возвратно-поступательное перемещение с частотой 2—7 Гц перпендикулярно основной плоскости полуфабриката при одновременном перемещении самого полуфабриката (рис. 2) [6].

Для того чтобы полуфабрикат при движении гофрированной поверхности совершал знакопеременный изгиб, прижимаясь к впадинам и выступам гофр (эффект «губки»), в качестве прижимного устройства используется полушина, обладающая упругими свойствами, а полуфабрикат перемещается вместе с двумя ленточными конвейерами из лайкры. Испытания рабочего органа показали возможность дубления кожевенного полуфабриката за 3—5 мин (8—10 ч по существующей технологии). Для поштучной обработки кожевенного полуфабриката разработаны требования к свойствам дубящих составов, основными критериями которых являются высокая устойчивость к механическим воздействиям и динамическая вязкость [4]. Использование специально синтезированных материалов, обладающих комплексом свойств для совмещённых процессов дубления и крашения, дубления и жирования, наполнения и жирования, позволит перевести на поштучную обработку и последубильные процессы.

Таким образом, новые технологии позволяют уменьшить количество чередований партионных и поштучных обработок, создают предпосылки для создания поточного линии на участке преддубильных и дубильных процессов в меховом производстве, дубильных и последубильных процессах в кожевенном производстве. Испытания новых технологий показали, что поштучное выполнение жидкостных процессов позволяет уменьшить многомерность параметров. В таблице представлены контролируемые параметры по новой и существующей технологией дубления кожевенного полуфабриката, пикелевания и дубления мехового полуфабриката.

Из таблицы видно, что число контролируемых параметров уменьшается почти в 2 раза: при пикелевании, дублении и жировании мехового полуфабриката, а также при дублении кожевенного полуфабриката. Характер контролируемых параметров изменился. По новой технологии нет необходимости определять концентрацию компонентов в процессе и по его окончании, применять разрушающие методы контроля (глубина проникания дубителя). Параметры, которые необходимо контролировать по новой технологии, несложны и могут быть реализованы современными средствами автоматизации.
Контролируемые параметры технологических процессов

<table>
<thead>
<tr>
<th>Наименование параметров</th>
<th>Меховое производство</th>
<th>Кожевенное производство</th>
</tr>
</thead>
<tbody>
<tr>
<td>Существующая технология (партионная обработка)</td>
<td>Новая технология (поштучная обработка)</td>
<td>Существующая технология (партионная обработка)</td>
</tr>
<tr>
<td>Температура раствора Начальная концентрация соли</td>
<td>Температура раствора Начальная концентрация соли</td>
<td>Температура раствора Начальная концентрация соли</td>
</tr>
<tr>
<td>Начальная концентрация кислоты</td>
<td>Начальная концентрация кислоты</td>
<td>Начальная концентрация кислоты</td>
</tr>
<tr>
<td>pH раствора</td>
<td>pH раствора</td>
<td>pH раствора</td>
</tr>
<tr>
<td>Частота и периодичность вращения мешалки</td>
<td>Частота вращения барабана</td>
<td>Частота вращения барабана</td>
</tr>
<tr>
<td>Длительность</td>
<td>Длительность</td>
<td>Длительность</td>
</tr>
<tr>
<td>Жидкостный коэффициент pH среза мехового полуфабриката</td>
<td>Усилие прижима рабочих органов</td>
<td>Усилие прижима рабочих органов</td>
</tr>
<tr>
<td>Дубление и жирование</td>
<td>Скорость конвейера Усилие прижима рабочих органов Расход рабочего состава</td>
<td>Скорость конвейера Усилие прижима рабочих органов Расход рабочего состава</td>
</tr>
</tbody>
</table>

Сопоставимость длительности жидкостных процессов по новой технологии и времени выполнения механических операций позволяет устранить вынужденные пролёжки. Однако пролёжку, как технологическую операцию, устранить пока не удается. Для этого пролёжку и последующий за ней технологический процесс необходимо рассматривать как единый процесс. Тогда после нанесения и внедрения рабочего состава в кожевую ткань кожевенный полуфабрикат необходимо подвергнуть дополнительному механическому воздействию на специальном устройстве, которое позволит устранить пролёжку, как отдельный технологический процесс [6], или термообработку. Можно совместить, например, процессы дубления, жирования, додублирования с пролёжкой и сушкой. Исследования показали, что специфические свойства рабочих составов способствуют ускорению сушки.

Одними из основных преимуществ новых технологий являются существенное снижение водопотребления и исключение сточных вод. Так, расход воды на обработку мехового сырья площадью 1000 дм² на пикелевание, дубление и жирование по существующей технологии составляет 170 дм³, по новой технологии — 4,45 дм³. За счёт увеличения выхода полуфабриката по площади (до 10 %), повышения качества готовой продукции, экономии электроэнергии, химических материалов экономический эффект составляет 17, 2 тыс. руб. на 1000 овчин.

Таким образом, результаты научных работ позволяют предложить принципы создания автоматизированного кожевенного и мехового производств:

обработка кожевенного и мехового сырья базируется на технологии поштучной обработки полуфабриката на всех процессах и операциях с оценкой его качества в трёх промежуточных точках;

управление технологическими процессами осуществляется точной дозировкой рабочих составов с определёнными свойствами, регулированием интенсивности обработки полуфабриката и управлением работой транспортно-ориентирующих устройств;

в основе построения автоматизированной ли-
обеспечить гибкость технологии перекомпоновки модулей, изменением маршрута движения полуфабриката.

Модуль представляет собой автоматизированный технологический комплекс, включающий машину для обработки сырья и полуфабриката, установку для приготовления рабочих составов заданных параметров, средства вычислительной техники.

Модули соединяются между собой транспортно-ориентирующими устройствами, позволяющими перемещать плоский полуфабрикат неправильной формы. При этом все машины должны быть одинаковой или кратной производительно- сти. Учитывая новейшие разработки в области создания устройств для поштучной обработки, создание таких модулей реально уже сегодня. Опытные работы в области создания устройств для проведения дубильных, красильных и жировых процессов кожевенного производства позволили сформулировать технические требования к агрегатам: скорость транспортирования полуфабриката должна быть не менее 0,10–0,15 м/с, количество наносимого состава 150–500 мл/ м², частота механического воздействия на кожевую ткань 1–7 Гц, длина агрегата 5–10 м.

Библиографические ссылки

1. Пулим Я.А. Технология выделки пушно-мехового и овчинно-шубного сырья. Изд. 2-е. М.: Легкая и пищевая промышленность, 1983. 216 с.
3. Думов В.С. Проблемы интенсификации технологических процессов в производстве кожи и меха // Обзорная информация, ЦНИИТЭНлегпром. 1991. № 1. 35 с.
7. Поломышленных С.П., Ронский А.Е., Багаев И.С., Титов А.В. Устройство для пропитки, пролёжки и сушки меховых шкурок, обрабатываемых «чулком» // Патент России № 2287588. 2006. Бюл. № 32.
Схема управления процессом получения обжаренных зёрен кофе:

1 – камера кондуктивного нагрева продукта; 2, 3 – греющие двухсекционные поверхности; 4 – камера сушки; 5 – камера обжарки; 6 – форсунки для подачи воды; 7 – пароперегреватель; 8 – парогенератор; 9 – емкость для сбора конденсата; 10 – теплообменник-рекуператор; 11 – компрессор теплонасосной установки; 12 – конденсатор; 13 – рабочая секция испарителя; 14 – резервная секция испарителя; 15 – терморегулирующий вентиль; 16, 17 – вентили; 18, 19 – насосы; 20 – переключатель потока влажного воздуха; исполнительные механизмы: A–B – входные каналы управления; a–к – выходные каналы управления; датчики: FE – расхода; TE – температуры; ME – влажности; PE – давления; LE – уровня; материалные потоки: 0.2 – влажный продукт; 0.2.1 – подсушенный продукт; 0.2.2 – высушенный продукт; 0.2.3 – обжаренный продукт; 0.18 – конденсат; 0.20 – угар (пар и неконденсирующиеся газы); 2.1 – отработанный пар; 2.2 – насыщенный пар; 2.3 – перегретый пар; 2.9 – пары испарившейся влаги; 3.2 – осушенный воздух; 3.3 – рециркуляционный воздух; 3.4 – горячий воздух; 5.1 – неконденсированные газы; 6.0 – хладагент
горесрсов с использованием теплонасосной установки.

Особенностью предложенной технологии является то, что получение обжаренных кофепродуктов осуществляется в три стадии: нагрев, сушка и обжарка (см. рисунок).

Зёрна кофе (вымьтые и очищенные) подаются в камеру кондуктивного нагрева, где равномерно распределяются и перемешиваются по грению двухсекционным поверхностям 2 и 3. За счёт теплопередачи между отработанным сушильным агентом и продуктом через грении поверхность 2 первой секции камеры кондуктивного нагрева происходит предварительный нагрев зернового сырья. Во второй секции грении поверхности 3 температура продукта повышается за счёт теплопередачи от отработанного перегретого пара (угара), подаваемого из камеры обжарки 5 через теплообменник-рекуператор 10.

Подготовительный нагрев продукта при кондуктивном энергообмене позволяет удалять поверхностную влагу и активизировать последующее удаление асборбционно-связанной влаги из капиллярной-пористой структуры продукта в процессе последующей кондуктивной сушки. Образовавшиеся пары отводятся из камеры в сборник конденсата 9.

После предварительной тепловой обработки продукт подаётся в камеру сушики 4, где высушивается горячим воздухом, подготовка которого осуществляется теплонасосной установкой [3]. Необходимая температура воздуха на входе в камеру сушики достигается в теплообменнике-рекуператоре за счёт теплоты отработанного перегретого пара. Отработанный воздух после сушики зёрна кофе дополнительно подогревается в конденсаторе теплонасосной установки 12 и подаётся в секцию 2 камеры кондуктивного нагрева. Для многократного использования отработанного воздуха в контур рециркуляции осуществляется его подача на осушение в двухсекционный испаритель теплонасосной установки, рабочей 13 и резервной 14 секции которого работают попеременно в режимах конденсации и регенерации.

Высушенные зёра кофе обжариваются в камере 5 перегретым паром. Для получения пара используется парогенератор 8 с электронагревательными элементами и предохранительным клапаном. Одна часть полученного насосного пара перегревается в пароперегревателе 7 и подаётся в камеру обжарки 5, а другая направляется на регенерацию (размораживание) резервной секции испарителя 14. Образовавшийся конденсат при размораживании из резервной секции испарителя отводится в сборник конденсата 9, а затем в режим замкнутого цикла снова подаётся в парогенератор 8 питательным насосом 18.

Отработанный перегретый пар после теплообменника-рекуператора направляется во вторую секцию грении поверхности 3 камеры кондуктивного нагрева, после чего конденсируется в сборнике конденсата.

В установившемся технологическом режиме обжарки зёрна кофе излишки часть перегретого пара, выводимая из контура рециркуляции и направляемая на подогрев осушенного воздуха, определяется микропроцессором из условия теплового баланса [4]:

\[
G_{\text{обрв}} = \frac{G_{\text{вых}} \left(i_1 - i_2 \right) - Q_{\text{пот}}}{i^*},
\]

где \(G_{\text{вых}} = G_{\text{вых}} - \) расход сырого и обжаренного кофе; \(W_1, W_2 \) — влажность сырого и обжаренного кофе; \(c_{np}, c_{np} \) — теплоёмкость сырого и обжаренного кофе; \(t_{np1}, t_{np2} \) — температура кофе на входе и выходе из камеры; \(G_{\text{вых}} \), \(G_{\text{вых}} \) — расход перегретого пара на входе и выходе из камеры; \(i_1, i_2 \) — теплосодержание перегретого пара на входе и выходе из камеры; \(Q_{\text{пот}} \) — потери тепла в окружающую среду.

Неконденсирующиеся газы в объёме 10—12 % от массы обрабатываемого продукта выводятся из контура рециркуляции перегретого пара через сборник конденсата. Одновременно непрерывно выводятся продукты терморазложения (канцерогены), что обеспечивает экологически безопасные условия в технологии производства обжаренных кофепродуктов.

В процессе обжарки зёрна кофе подвергаются промежуточному увлажнению частичной подачей воды из ёмкости 9 с помощью насоса 19 в камеру обжарки. Вода распыляется форсунками 6 над слоем продукта. При этом снижается величина утара до 10—12 % и уменьшаются потери экстрактивных веществ, увеличивается выход готовой продукции.

Информация об ходе процесса получения обжаренных кофепродуктов, подготовки воздуха и пара с помощью датчиков передаётся в микропроцессор, который по заложенному в него программно-логическому алгоритму осуществляет оперативное управление технологическими параметрами с учётом ограничений, обусловленных получением готового продукта высокого качества.

По текущей информации о влажности, температуре и расходе продукта после его предварительного подогрева в камере кондуктивного нагрева микропроцессор устанавливает заданный режим сушки (массовый и тепловой расход сушильного агента на входе в камеру сушки) воз-
действием на мощность регулируемых приводов вентилятора \(I6 \) и компрессора \(II \). Изменение расхода воздуха ограничено аэродинамическим сопротивлением слоя продукта. Для обеспечения необходимого температурного режима сушки температура осушенного воздуха доводится до заданного значения в теплообменнике-реюниторе, а затем подаётся в камеру сушки. При этом создаются условия низкотемпературной сушки осушенным воздухом, сухильная способность которого контролируется по влажности подсушенного продукта. По измеренным значениям влагосодержания воздуха до и после сушки продукта в камере сушки и его расходу определяется количество водяных паров в отработанном воздухе:

\[
U = (x_{\text{вл}} - x_{\text{вых}}) \rho \ V ,
\]

где \(x_{\text{вл}} \), \(x_{\text{вых}} \) — влагосодержание воздуха на входе и выходе из камеры сушки; \(\rho \) — плотность сухого воздуха; \(V \) — объёмный расход воздуха, в соответствии с которым устанавливается расход хладагента в рабочую секцию испарителя.

При отклонении влажности высушенного продукта в сторону увеличения от заданного значения микропроцессор снижает влагосодержание воздуха, увеличивая мощность компрессора теплонасосной установки, повышая его сухильную способность.

Процесс охлаждения отработанного воздуха в рабочей секции испарителя теплонасосной установки сопровождается конденсацией влаги из воздуха в «снеговую щубу» на её поверхности, что снижает коэффициент теплопередачи от хладагента к воздуху через стенку рабочей секции испарителя. Наращивая во времени толщина «снеговой щубы» снижает интенсивность осушения воздуха.

Микропроцессор непрерывно вычисляет текущее значение коэффициента теплопередачи и вырабатывает сигнал отклонения текущего значения коэффициента теплопередачи от заданного, т. е. изменяет расход хладагента [3], воздействуя на соотношение расхода «воздух—хладагент».

Если увеличение хладопроизводительности (расхода хладагента) не позволяет вывести текущее значение коэффициента теплопередачи на заданный интервал значений, то микропроцессор отключает рабочую секцию испарителя из линии рециркуляции хладагента теплонасосной установки и подключает резервную секцию.

Одновременно переключается направление движения потока воздуха в резервную секцию испарителя теплонасосной установки, которая из режима регенерации переходит на рабочий режим конденсации (охлаждения и осушения воздуха).

По измеренным значениям расхода, температуры и влажности зернопродукта после сушки микропроцессор устанавливает заданный расход и температуру перегретого пара, а также заданный расход воды для увлажнения продукта в камере обжарки.

Непрерывная стабилизация давления насыщенного пара в парогенераторе осуществляется регулированием мощности электронагревательных элементов. При этом достигается заданная производительность парогенератора, контроль которой обеспечивается датчиками расхода пара \(F E \).

При изменении уровня конденсата в парогенераторе происходит двупозиционное регулирование: насос \(18 \) включается при достижении уровня конденсата в парогенераторе нижнего заданного значения и отключается при верхнем заданном значении.

При технологических и аварийных сбоях в работе парогенератора, связанных с возможным увеличением давления насыщенного водяного пара в рабочем объёме, предусмотрен предохранительный клапан. Таким образом, предлагаемый программно-логический алгоритм позволяет повысить произво-дительность линии на 10—12 % за счет точности и надёжности управления технологическими параметрами, стабилизирует температурный режим сушки продукта кондиционированным воздухом в области заданных значений, обеспечивает необходимые термовлажностные характеристики продукта перед обжаркой, снижает энергозатраты на тонну обжаренного продукта на 10—15 %, обеспечивает экологически чистую технологию получения обжаренных кофепродуктов.

Библиографические ссылки

УДК: 004.62

В.И. Ухов, канд. физ.-мат. наук (ООО «Систел», г. Москва)
yxob@mx.systel.ru

ЗАМЕЩЕНИЕ ДАННЫХ В СИСТЕМАХ ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ
ЭЛЕКТРИЧЕСКИМИ СЕТЯМИ

Освещены вопросы замещения и обработки данных, полученных по резервным каналам связи. Обсуждены информационные сопряжения быстрых и медленных каналов связи. Рассмотрено наличие нескольких параллельных каналов связи, что даёт дополнительные возможности. Индивидуальное замещение данных помогает повышать наблюдаемость для удалённых и распределённых объектов управления. Приведён пример решений, доказавших свою эффективность в течение последних пяти лет.

Ключевые слова: замещение, каналы связи, основной канал, резервный канал, параллельные каналы, индивидуальное замещение.

Questions of the dates substitution and processing that were received from reserve channel connection are considered. Information coupling of the rapid and slow channel connection is discussed. Availability of a few parallel channels connection that gives additional possibilities is considered. Individual dates substitution helps in observability increasing of the remote and distributed control objects. Example of decisions that proved their efficiency throughout the last five years is added.

Key words: substitution, channel connection, basic channel, reserve channel, parallel channels, individual substitution.

Введение. Управление технологическими процессами и управление электрическими сетями имеют много общего. Специфика управления электрическими сетями вызвана, с одной стороны, территориальной распределённостью объекта управления, а с другой — непрерывностью его функционирования. Этим обусловлено то значительное внимание, которое уделяется различным вариантам и схемам резервирования. Резервируются датчики, каналы связи и обрабатывающие узлы системы управления электрическими сетями. При этом вся собираемая информация актуальна и достоверна.

Замещение каналов связи. Рассмотрим ситуацию, когда имеется несколько параллельных каналов связи. Обычно в каждый конкретный момент один из каналов рассматривается как основной, а остальные — как резервные. Если основной канал начинает давать сбои, то система сброса данных автоматически переключается на резервный канал. Существенным достоинством данного решения является простота его реализации.

В реальной ситуации параллельные каналы могут обладать различной пропускной способностью. Примером является параллельное существование цифрового и телемеханического каналов (рис. 1). По каналам связи могут передаваться как общие для всех каналов данные, так и данные, присутствующие только в одном канале связи, например информация о состоянии конкретного полукомплекта для передающей системы с резервированием.

Реализованное решение основано на разделении данных на группы. Для определённости рассмотрим каналы данных I и II. Все принимаемые из каналов данные поступают в общую область. Область разделена на три группы (рис. 2).

Первая группа содержит данные, поступающие только по каналу I (канал II не может изменить данные в этой группе). Вторая группа содержит данные, поступающие только по каналу II (канал I не может изменить данные в этой группе). Третья группа содержит общие данные. Изменить данные в этой группе может только тот канал, который в данный момент является ведущим. Ведущим в каждый момент может быть только один канал — канал I или канал II.

Таким образом, в первую группу поступают данные только из канала I, во вторую группу — только из канала II. В третью же группу поступают данные из ведущего канала. Причины, по
которым канал может стать ведущим, рассмотрим ниже, а сейчас остановимся на поведении признака достоверности данных для каждой группы.

При отказе канала I и его неработоспособности в течение заранее определённого времени (иногда для обозначения этого времени используется термин \textit{timeout}) все данные первой области помещаются как недостоверные. Аналогично, при отказе канала II и его неработоспособности в течение заранее определённого времени все данные второй области помещаются как недостоверные. Данные третьей области помещаются как недостоверные только после отказа обоих каналов и их неработоспособности в течение заранее определённого времени.

Правила замещения каналов. При наличии нескольких параллельных каналов только один из них может быть ведущим. Ведущий канал важен не только для приёма данных. Именно он используется для воздействия на управляемую систему. Воздействия могут осуществляться в форме передачи запросов или команд. Для команд, а иногда и для запросов одновременная отправка по нескольким работоспособным каналам недопустима. Поэтому для передачи команд и запросов используется ведущий канал.

Выбор ведущего канала осуществляется по следующим правилам:

- ведущим может быть только работоспособный канал;
- при наличии двух работоспособных каналов система выбирает канал с наивысшим приоритетом, а второй становится резервным;
- канал может быть сделан ведущим принудительно, по запросу оператора системы;
- канал может быть сделан ведущим принудительно, по запросу, поступившему из канала.

Описанные выше правила замещения каналов были успешно использованы в следующих ситуациях:

- параллельные каналы одинаковой производительности (полностью идентичное информационное наполнение, только общие данные в обоих каналах);
- параллельные каналы различной производительности (различное информационное наполнение каналов. Объём общих данных определяется возможностями медленного канала) (см. рис. 1);
- резервированные системы сбора (каналы одинарной производительности, но связанные с различными «полукомплектами» резервированной системы; каждый канал содержит данные, специфичные для соответствующего полукомплекта).
Реализация предложенного механизма замещения каналов предполагает одинаковую адресацию данных в использоваемых каналах. Данное требование не является обязательным. На самом деле достаточно сводимости адресов каналов к некоторому общему представлению. Другими словами, адресация в каналах может быть разной, но должны существовать алгоритмы приведения адреса канала к внутреннему адресу системы.

Замещение каналов удобно тем, что позволяет организовать замещение групп данных. К сожалению, иногда требуется индивидуальная настройка правил замещения. Это особенно актуально в случае косвенного получения замещаемых данных, например через вычисление.

Индивидуальное замещение данных. Это помогает повысить наблюдаемость для удалённых и распределённых объектов управления. Отсутствующие или недостоверные данные могут замещаться вычисленной информацией или данными, полученными от смежных систем. Существенным недостатком индивидуального замещения, по сравнению с замещением каналов, является большой объём требуемой конфигурационной информации. Для каждого замещаемого сигнала необходимо задать правила замещения.

Для реализации замещения данных предварительно следует ответить на ряд вопросов:
- как организовать замещение при наличии нескольких источников данных;
- возможен ли принудительный выбор источника замещения;
- остаётся ли доступным замещаемое значение;
- когда применять правила замещения?

Ответы на эти вопросы легли в основу предложенного и реализованного механизма индивидуального замещения данных. Основные элементы решения излагаются ниже.

Для организации замещения создаётся дополнительный сигнал (тэт), значение которого в каждом конкретный момент совпадает с выбранным источником информации. Этим источником может быть основной или замещающий сигнал. Благодаря тому, что для сигнала замещения используется дополнительный тэт, в системе присутствуют сигнал замещения, основной сигнал и замещающие сигналы.

Для управления очередностью замещения сигналам присваиваются приоритеты. Основному сигналу присваивается приоритет замещения «0», замещающим сигналам — приоритеты «1», «2» и т. д. Замещение осуществляется в соответствии со следующим правилом: «Источником информации для сигнала замещения является достоверный сигнал с наименьшим значением приоритета».

При организации замещения также может проводиться масштабирование исходных сигналов.

Таким образом, если основной сигнал с приоритетом «0» достоен, то значение сигнала замещения равно значению основного сигнала. Если же основной сигнал не достоен, но достоен замещающий сигнал с приоритетом «1», то значение сигнала замещения равно значению замещающего сигнала с приоритетом «1» и т. д. В случае, когда основной сигнал не достоен и все замещающие сигналы не достоверны, сигнал замещения помечается как недостоверный.

Несмотря на приоритеты замещающих сигналов, за диспетчером системы управления оставле- но право установить принудительное замещение. В этом случае значение замещающего сигнала строго совпадает с основным или одним из замещающих сигналов, независимо от состояния достоверности.

Особенности индивидуального замещения. В информационных системах, построенных на циклическом обновлении данных, естественно требуется организовать пересчёт значений сигналов замещения по циклу системы. В основе большинства современных информационных систем лежит механизм событий, обеспечивающий требуемую реактивность при наличии большого количества обрабатываемых сигналов. В таких системах пересчёт значений сигналов замещения может быть организован по псевдочику. К соjalению, данный подход имеет существенные недостатки.

Первым недостатком является снижение общей реактивности системы. Второй недостаток вытекает из первого. Порядок событий в журналах системы может быть нарушен из-за задержки пересчёта значений сигналов замещения. Эти задержки также могут привести к передаче запросов или команд управления по устаревшему адресу.

С учётом изложенного автором был реализован событийно управляемый механизм пересчёта значений сигналов замещения. Существенным элементом данного механизма является принцип «фокусировки», когда изменение основного или замещающего сигнала может привести к пересчёту значений сигнала замещения.

В любой достаточно сложной информационной системе могут существовать паразитические циклы. В частности, подобные циклы могут возникать в результате ошибок при описании сигналов замещения.

Рассмотрим пример. Активное состояние цикла включает две операции присваивания: «Сигнал замещения A принимает значение «Сигнал замещения B»), а «Сигнал замещения B» принимает значение, обратное «Сигналу замещения A». Таким образом, происходит постоянная смена знака у обоих сигналов. Подобные паразитические циклы могут быть обнаружены в событийно
управляемых системах, так как осуществляют легко детектируемую непрерывную генерацию событий.

Замещение и управляющие воздействия. Ранее уже была рассмотрена проблема передачи управляющих воздействий при замещении каналов связи. Воздействия могут осуществляться в форме передачи запросов или команд. Для команд, а иногда и для запросов одновременная отправка по нескольким работоспособным каналам недопустима. В случае замещения каналов для передачи команд и запросов используется ведущий канал. При индивидуальном замещении данных отправка команд или запросов по сигналам замещения также должна быть организована корректно. Одновременная отправка команд и запросов по нескольким замещающим сигналам в большинстве случаев недопустима. Поэтому команды и запросы отправляются по тому сигналу, который осуществляет замещение в данный момент.

Заключение. Если основной канал начинает давать сбои, то система сбора данных автоматически переключается на резервный канал. При наличии нескольких параллельных каналов только один из них может быть ведущим, именно он используется для передачи запросов и команд на управляющую систему. Изложенные в работе способы замещения данных, вычисленных или полученных по резервным каналам связи, были реализованы в системах сбора и обработки данных компаний «Система». Замещение каналов связи, индивидуальных сигналов и управление в условиях замещения используются в настоящее время на рядах объектов энергетики: в районах электрических сетей (РЭС), на предприятиях электрических сетей (ЭС) и в центрах управления сетями (ЦУС). Эксплуатация систем, включающих описанные способы замещения, доказала эффективность предложенных решений.

Библиографические ссылки

Введение. Автоматизация контроля радиоэлектронного оборудования (РЭО) представляет собой сложную комплексную задачу, для решения которой должны привлекаться разработчики РЭО и средств контроля (СК), в том числе автоматизированных средств контроля (ACK), разработчики контрольно-измерительного оборудования (КИО) и специалисты, занимающиеся эксплуатацией и ремонтом всей системы в целом (РЭО − СК/ACK − КИО).

Для их согласованного взаимодействия, организации, управления и координации необходимо разработать концептуальную модель построения унифицированных средств контроля РЭО, включающую методологию их создания.

Отметим, что предлагаемая методология не носит частного локального характера, а охватывает процесс автоматизации проектирования унифицированных СК в целом для всех этапов: создания, внедрения, модернизации, эксплуатации и ремонта РЭО, СК/ACK, КИО.

Обоснование концептуальной модели построения унифицированных средств контроля радиоэлектронного оборудования. Пусть РЭО представлено множеством объектов контроля (ОК) − $S_{РЭО} = \{S_1^{РЭО}, S_2^{РЭО}, ..., S_i^{РЭО}\}$, эксплуатирующие и ремонтные организации РЭО − множеством $S_{ЭР} = \{S_1^{ЭР}, S_2^{ЭР}, ..., S_i^{ЭР}\}$, различные СК/ACK − множеством $S_{СК} = \{S_1^{СК}, S_2^{СК}, ..., S_i^{СК}\}$, где J − количество объектов РЭО, I − количество эксплуатирующих и ремонтных организаций; C − количество СК. Множество функций $F = \{f_1, ..., f_j, ..., f_Z\}$ на множествах $S_{РЭО}$ и $S_{ЭР}$ характеризует общее количество Z различных научных подходов (методов и методик и т. д.), направленных на разработку СК. В частном случае

$$f_z : (S_{РЭО}, S_{ЭР}^{З}) \rightarrow S_{СК}^{З},$$

где f_z является отображением $(S_{РЭО}^{З}, S_{ЭР}^{З}) \rightarrow S_{СК}^{З}$ на пространстве характеристика R_z, $f_z \in R^{Z}$; $x = 1, 2, ..., X; X$ − общее количество характеристик множеств $S_{РЭО}, S_{ЭР}, S_{СК}$.

Обозначим последовательность таких характеристик кротежем $r_x^{X} = \langle n_1, ..., n_i, ..., r_x^{X} \rangle, r_x^{X} \in r^{X}, r_x^{X} \in R^{X}, r_x^{X} \in R^{X}$ − множество кротежей. С учётом изложенного разработки, создание и модернизация СК/ACK на основе различных ведомственных и научных подходов могут быть представлены в виде модели

$$SM_h = \langle Pu_h, S_h, F_h, Con_h \rangle;$$

$$S_h = \langle S_{РЭО}(r_x^{X}), S_{СК}(r_x^{X}), S_{ЭР}(r_x^{X}) \rangle;$$

$$F_h = \langle S_{РЭО}(r_x^{X}), S_{ЭР}(r_x^{X}) \rightarrow S_{СК}(r_x^{X}) \rangle;$$

$$h = 1, 2, ..., H,$$

где SM_h − существующая система создания СК/ACK; Pu_h − цель функционирования системы (создание СК/ACK); S_h − кротеж объектов системы, состоящий из $S_{РЭО}(r_x^{X}), S_{СК}(r_x^{X}), S_{ЭР}(r_x^{X})$; F_h − множество взаимосвязей между объектами системы, характеризующее множество научных подходов; Con_h − заданные условия; H − количество ведомств.

Модель (1)−(3) концептуально отражает существующее положение дел в области разработки, построения и модернизации СК/ACK. Графическая интерпретация модели (1)−(3) приведена на рис. 1, где показано, что под один и тот же образец РЭО (или однотипный с ним) разными ве-
Рис. 1. Концептуальная модель построения автоматизированных средств контроля

dомства могут разрабатываться и создаваться отличные друг от друга СК/АСК.

Введём функцию оценки множества кортежей \(V(r^X) = V(r^T, r^3) \), которая при выделении из \(r^X \) кортежей \(r^T \) — технических характеристик (ТХ) — будет иметь вид \(V(r^X) \), \(V(r^T) \in R^X \), а при выделении кортежей \(r^3 \) — технико-экономических характеристик (ТЭХ) — \(V(r^3) \), \(V(r^3) \in R^X \).

В этом случае оценка множества кортежей \(r^X = (r^T, r^3) \) в модели (1)—(3) описывается системой уравнений

\[
F_h(S_{X_0}(r^T, r^3)_h, S_{x_w}(r^T, r^3)_h) \Rightarrow \\
S_{C_k}(r^T, r^3)_h, \\
V(r^T, r^3)_h \Rightarrow S_{C_k}(r^T, r^3)_h, \\
V(r^T, r^3)_h \Rightarrow V(r^T)_h \rightarrow \max; \\
V(r^T, r^3)_h = V(r^3)_h \rightarrow \min;
\]

\(h = 1, 2, ..., H, \)

где \(F_h \in R^X, (r^T, r^3)_h \in R^X \) и \(V(r^T, r^3)_h \in R^X \); \(S_{C_k}(r^T, r^3)_h \) — множество всех рассматриваемых СК по отношению к множеству \(X_0(r^T, r^3)_h \); * — принадлежность СК к эксплуатирующей или ремонтной организации РЭО, выбранной в качестве эталонной (базовой); \(\Rightarrow \) — выделение последовательности соответствующих характеристик; \(\max \) — максимальное соответствие характеристикам базовых СК.

Модель (4)—(7) показывает, что каждый разработчик объектов РЭО или СК для различных систем эксплуатации и ремонта РЭО не только выделяет свои кортежи характеристики \(r^T \in r^X \), но и осуществляет также оценки технических, экономических характеристик в соответствии со своими индивидуальными, ведомственными и научными подходами, что исключает возможность создания унифицированных СК.

Для устранения этого недостатка необходимо ввести дополнительные вертикальные взаимосвязи между соответствующими объектами \(S_{X_0}(r^T)_h, S_{C_k}(r^T)_h \) и \(S_{x_w}(r^T)_h \) в концептуальную модель (1)—(3), которые позволят на основе наличия общности вербальных признаков технических характеристик РЭО разрабатывать унифицированные СК/АСК для различных систем эксплуатации и ремонта, а также проводить оценку степени унификации существующих СК/АСК.

В этом случае модель (1)—(3) принимает вид

\[
SM = \langle Pu, S, F, Con \rangle; \\
S = \bigcap_{h=1}^{H} S_{X_0}(r^X)_h, \\
S = \bigcap_{h=1}^{H} S_{C_k}(r^X)_h, \\
\bigcap_{h=1}^{H} S_{x_w}(r^X)_h >;
\]

ISSN 0869-4931 «АВТОМАТИЗАЦИЯ И СОВРЕМЕННЫЕ ТЕХНОЛОГИИ», 2010. № 7
Введём следующие обозначения:

\[
\begin{align*}
\bigcap_{h=1}^{H} S_{\text{ПЭО}}(r^X)_h &= S_{\text{ПЭО}}(r^X) ; \\
\bigcap_{h=1}^{H} S_{\text{СК}}(r^X)_h &= S_{\text{СК}}(r^X) ; \\
\bigcap_{h=1}^{H} S_{\text{Э lr}}(r^X)_h &= S_{\text{Э lr}}(r^X) ; \\
F &= M_{\rho}.
\end{align*}
\]

где \(r^X \) — множество кортежей общих характеристик \(X^0 \in X \).

В этом случае концептуальная модель (8)—(10) принимает вид

\[
\begin{align*}
SM &= \langle Pu, S, M_{\rho}, Con \rangle ; \\
S &= \langle S_{\text{ПЭО}}(r^X), S_{\text{СК}}(r^X), S_{\text{Э lr}}(r^X) \rangle ; \\
M_{\rho}(S_{\text{ПЭО}}(r^X), S_{\text{Э lr}}(r^X)) &= S_{\text{СК}}(r^X).
\end{align*}
\]

где \(r^X \) — кортеж общих характеристик для объектов системы; \(U \) — символ, который означает унифицированное СК.

Графическая интерпретация концептуальной модели (11)—(13) с учётом методологии создания унифицированных СК/АСК представлена на рис. 2.

Рис. 2. Концептуальная модель построения унифицированных автоматизированных средств контроля
Тогда модель оценки крежей характеристик (4)–(7) принимает вид

$$M_P(S_{РЭО}(r^T, r^3), S_{ЭМР}(r^T, r^3)) \Rightarrow$$

$$\Rightarrow S_{СК}(r^T, r^3);$$

$$V(r^T, r^3) \Rightarrow \frac{S_{СК}(r^T, r^3)}{S_{УСК}(r^T, r^3)};$$

$$V(r^T, r^3) \Rightarrow V(r^T) \Rightarrow \max_U;$$

$$V(r^T, r^3) \Rightarrow V(r^3) \Rightarrow \min,$$

где $$M_P \in R^{x_0}, (r^T, r^3) \in R^{x_0}, V(r^T, r^3) \in R^{x_0}$$ и $$R^{x_0} \in R^5; S_{СК}(r^T, r^3)$$ — множество всех рассматриваемых СК по отношению к множеству $$S_{УСК}(r^T, r^3); U$$ — выбор СК в качестве унифицированного по отношению к различным системам эксплуатации и ремонта объектов РЭО; $$\max_U$$ — максимальное соответствие характеристикам унифицированного СК.

Методология построения унифицированных автоматизированных средств контроля радиоэлектронного оборудования. Методология $$M_P$$ — функционально включает совокупность теоретических положений, порядок применения моделей, методов и средств достижения заданной цели — построения и исследования унифицированных
СК/АСК для различных систем эксплуатации и ремонта РЭО и может быть записана в виде

\[M_p = \langle Pu, \ St, \ Met, \ Con, \ Re, \rangle, \]

где \(Pu \) — цель методологии, заключающаяся в разработке унифицированных СК/АСК с минимальными технико-экономическими характеристиками; \(St \) — набор моделей, формализуемый математическое описание этапов создания СК/АСК; \(Met \) — методика проведения исследования, состоящая из методов достижения цели; \(Con \) — система показателей, определяющая заданные условия; \(Re \) — адаптивный алгоритм, реализующий средства достижения цели.

На рис. 3 представлена методология (14) построения унифицированных автоматизированных средств контроля. Системно-логический анализ объектов РЭО, систем эксплуатации и ремонта позволяет представить \(St \) кокрежем

\[\langle St_1, St_2, St_3, St_4, St_5, St_6, \rangle, \]

где \(St_1 \) — модель классификации ОК; \(St_2 \) — модель формирования обобщенного объекта контроля (ООК); \(St_3 \) — модель покрытия ТХ обобщенного ОК ТХ СК/АСК; \(St_4 \) — модель формирования вариантов наборов СК; \(St_5 \) — модель определения оптимального набора СК; \(St_6 \) — модель определения рационального набора СК.

Аналогичными структурою \(St \) будут структуры методики проведения исследования, состоящей из методов достижения цели \(Met = \langle Met_1,.., Met_6 \rangle \); средства достижения цели \(Re = \langle Re_1,.., Re_6 \rangle \), которые при заданных условиях (ограничениях) на технические \(Con \) и технико-экономические \(Con_3 \) характеристики, \(Con = \langle Con_1,.., Con_3 \rangle \), позволяют получить оптимальное или рациональное унифицированное СК.

Заключение. Концептуальная модель построения унифицированных СК позволит обеспечить единую техническую политику и унификацию при разработке, создании, эксплуатации, модернизации и утилизации СК для всех видов систем эксплуатации и ремонта РЭО. Предложенная концептуальная модель и методология построения унифицированных СК дают возможность осуществить сравнительную оценку технических и технико-экономических характеристик аппаратных частей существующих и разрабатываемых вновь СК/АСК РЭО и оценку степени их унификации по отношению к группе (группам) или классу (класам) объектов РЭО.

Математическое обоснование концептуальной модели и структуры методологии построения унифицированных автоматизированных средств контроля радиоэлектронного оборудования выполнено при поддержке гранта Президента Российской Федерации № MK–3735.2004.10.

НАНОИНДЕНТИРОВАНИЕ И ЕГО ВОЗМОЖНОСТИ

Ю.И. Головин

Описаны принципы, методы и средства для реализации испытаний и определения механических свойств материалов в наношкале, которые получены в последние годы. Большое распространение получили нанометрические методы измерений "наноиндентирование". Обсуждены информационные возможности этого большого и многофункционального семейства методов нано- и микромеханических испытаний. Рассмотрены различные аспекты и особенности процессов твердых тел в условиях сильно статической деформации, возникающей при локальном нагружении поверхности микро- и наноразмерных систем. Описаны способы измерения механических характеристик тонких подповерхностных слоев разнообразных материалов, пленок и многослойных покрытий при локальном нагружении. Особое внимание уделяется физическим механизмам деформации и разрушения в этих условиях.

Книга адресована научным и инженерно-техническим работникам, занимающимся созданием, исследованием и аттестацией новых наноструктурных материалов и систем, полезна студентам и аспирантам, обучающимся по направлениям нанотехнологий и наноматериаловедения.

Цена 693 р.

Приобрести книгу по цене издателя можно, прислав заявку в отдел продаж, маркетинга и рекламы:
по почте: 107076, г. Москва, Стромынский пр., 4; по факсу: (499) 269-48-97; по e-mail: realiz@mashin.ru
Дополнительную информацию можно получить по телефонам: (499) 269-66-00, 269-52-98 и на сайте WWW.MASHIN.RU
УДК 621.396.23; 681.3.06

Н.Г. Чернышов, канд. техн. наук, доц., О.А. Белоусов, канд. техн. наук
(Тамбовский государственный технический университет)
jiour@mail333.com

СИСТЕМА УПРАВЛЕНИЯ УДАЛЁННЫМИ ДИНАМИЧЕСКИМИ ОБЪЕКТАМИ С ИСПОЛЬЗОВАНИЕМ ПРИНЦИПОВ КОГНИТИВНОЙ ГРАФИКИ

Рассмотрены проблемы создания системы энергосберегающего управления динамическими объектами на примере электрических печей: формализация задачи оптимального управления, множество состояний функционирования объекта, анализ и синтез оптимального управления с использованием когнитивной графики, удаленный доступ к объекту, повышение эффективности систем энергосберегающего управления.

Ключевые слова: задачи оптимального управления, идентификация моделей, информационные технологии, множество состояний функционирования, полный анализ оптимального управления, синтез в реальном времени, когнитивная графика.

Creature problems of the dynamical objects energy-efficient control system as an example of electric ovens are considered: optimal control formalization task, object functioning multitude states, optimal control analysis and synthesis through the use of cognitive graph, remote access to object, energy-efficient control system efficiency growth.

Key words: optimal control tasks, model identification, information technologies, functioning multitude states, optimal control full analysis, actual time synthesis, cognitive graph.

Введение. К динамическим объектам прежде всего следует отнести тепловые аппараты, машины с электроприводами и транспортные средства. Рассмотрим в качестве примера электрические печи. Особенностью этих объектов с точки зрения оптимального управления является большая энергоёмкость, циклический характер режима работы, меняющегося в зависимости от плановых заданий, разная продолжительность включённого состояния, частые замены объёма и вида обрабатываемого материала или продукции, изменения заданного значения температуры в зависимости от вида загружаемого материала, наличие различного рода возмущений. Основные затраты энергии данных объектов, в частности электрокамерных печей, связаны с начальным разогревом печи и догревом до требуемой температуры.

Для энергосберегающего управления динамическими режимами требуется значительный объём входной информации, которая не остаётся постоянной на временнном интервале управления, а претерпевает существенные изменения как в планируемые, так и в случайные моменты времени.

Требуется создание систем, которые способны постоянно отслеживать вид и параметры модели динамики объекта, выбирать оптимальные режимы в любых встречающихся на практике состояниях функционирования. Такие системы способны экономить энергоресурсы и обеспечивать более высокие качественные показатели продукции, а также продлевать ресурс работы оборудования. Поэтому создание подобных систем на фоне современной мировой экономической ситуации является своевременной и актуальной задачей.

Постановка задачи. Рассмотрим в качестве примера математическую постановку одной из традиционных задач оптимального управления — задачи с ограничением на управление u, фиксированным интервалом времени $[t_0, t_k]$ и закреплёнными концами траектории изменения вектора фазовых координат $z = (z_1, ..., z_n)^T$, где T — знак транспонирования; t_0, t_k — начальное и конечное временного интервала управления соответственно [1, 2]. В результате решения задачи требуется определить оптимальную программу при программной стратегии

$$u^*(\cdot) = (u^* (t)), \in [t_0, t_k]$$

или синтезирующую функцию при позиционной стратегии

$$u^* (t) = s(z(t)), t_k - 1,$$

которые обеспечивают перевод объекта из начального состояния z^0 в конечное z^k за время $t_k - t_0$ при минимуме затрат энергии J_E. Сокращённую данную задачу оптимального управления будем обозначать критерием
\[
T = \langle M, J_E, S, O \rangle,
\]
(3)
где \(M \) — модель динамики объекта; \(J_E \) — вид минимизируемого функционала; \(S \) — стратегия реализации оптимального управления (программная или позиционная); \(O \) — характерные ограничения и связи (например, на управление) [3].

Кортеж (3) по существу является моделью задачи оптимального управления.

Для численного решения задачи оптимального управления, т. е. определения конкретного вида функции оптимального управления \(u^*(t) \) (или синтезируемой функции (2)) и её параметров, а также значений \(z^*(t) \), \(t \in [t_0, t_f] \) и \(J^* = J_E(u^*) \) за- даётся массив исходных данных (реквизитов):
\[
R = f(A, B, C, \Theta, u_0, u_1, z^0, z^k, t_0, t_f),
\]
(4)
где \(A, B, C \) — массивы параметров модели объекта (при \(z, u, w \)); \(\Theta \) — массив времени запаздывания по каналам \(u \) и \(w \); \(w \) — возмущающее воздействие; \(u_0, u_1 \) — нижнее и верхнее граничные значения интервала изменения управляющего воздействия соответственно.

Множество состояний функционирования. Если на временном интервале управления \([t_0, t_f] \) четвёрка \(T \) и значения массива \(R \) остаются неизменными, то задача оптимального управления (3) с массивом (4) соответствует одному состоянию функционирования \(h \). Данное обстоятельство может отражаться индексом \(h \) у соответствующих обозначений \(J_h, R_h, A_h \) и др.

В процессе эксплуатации конкретного объекта вследствие нарушения работы технических средств, смены производственных ситуаций могут измениться как отдельные компоненты модели задачи оптимального управления, например вид минимизируемого функционала \(J_E \), стратегия реализации оптимального управления, так и значения составляющих массива \(R \). Эти изменения в \(J_E \) и \(R \) соответствуют смене значений переменной \(h \) [4]. Возможные значения переменной \(h \), которыми соответствуют различные модели задачи оптимального управления и значения массива \(R \) применительно к конкретному объекту управления в процессе его эксплуатации, образуют множество состояний функционирования \(H_0 \). В общем случае множество \(H_0 \) можно ввести как декартово произведение:
\[
H_0 = M \times J_E \times S \times O \times R,
\]
(5)
где \(M, J_E, S, O, R \) — множества различных моделей динамики объекта, видов функционала, стратегий управления, ограничений и значений массива \(R \) соответственно.

В отличие от переменной состояния (ектора фазовых координат) \(z \) объекта, которая обычно является гладкой функцией времени, переменная \(h \) скачкообразно изменяет свое значение при изменении модели \(M \), вида функционала \(J_E \) и т. д. Изменения \(h \) могут происходить как в случайные, так и в планируемые моменты времени. Траекторию изменения \(h \) будем рассматривать как ступенчатую кусочно-постоянную функцию
\[
h(t) = (h(t) = h_0, \forall t \in [t_0, t_1]), h(t) = h_1, \forall t \in (t_1, t_2), \ldots),
\]
(6)
где \(t_1, t_2, \ldots \) — моменты времени изменения значения переменной \(h \).

Наряду с множеством \(H_0 \), которое вводится при разработке систем энергосберегающего управления для конкретного объекта, введём множество \(H_R \) для определённы модели задачи оптимального управления. Возможные значения переменной \(h \), которыми соответствуют все физические реализуемые значения компонентов массива \(R \) применимо к определённой модели задачи оптимального управления для любых объектов управления, образуют множество состояний функционирования \(H_R \). Множество \(H_R \) вводится как декартовое произведение
\[
H_R = A \times B \times C \times \Theta \times U_0 \times Z_k \times J_E,
\]
(7)
где \(A, B, C, \Theta, U_0, \mathcal{Z}_k, J_E \) — множества значений параметров моделей динамики \(A, B, C \), времени запаздывания \(\Theta \), границ управления \(\{u_0, u_1\} \) закреплённых концов \(z^0, z^k \) траекторий \(z(t) \) и временного интервала \([t_0, t_f] \), вида минимизируемого функционала соответственно.

Таким образом, при создании систем энергосберегающего управления необходимо учитывать характеристики множеств \(H_0 \) и \(H_R \).

Задачи анализа и синтеза. На начальном этапе создания системы оптимального управления определяют свойства объекта и его особенности при реальной эксплуатации, выдвигают гипотезы о возможном виде минимизируемого функционала и стратегий реализации оптимального управления, рассматривают ограничения на изменение фазовых координат и управляющие воздействия. По результатам этих исследований в общем виде записывается математическая постановка задачи оптимального управления (1)–(3). При этом ука-зывают размерности переменных \(z, u, w \) и возможные области их изменения.

Построение модели динамики исследуемого объекта предполагает определение вида основных уравнений, которые, с одной стороны, могут быть использованы при анализе и синтезе оптимального управления, с другой — достаточно точно отражают реальные процессы, а также оценку параметров модели по экспериментальным данным.
и проверку адекватности модели в различных состояниях функционирования.

Задачи анализа и синтеза оптимального управления являются наиболее сложными и трудоёмкими. На данном этапе исследований окончательно формулируют задачу оптимального управления с учётом полученной модели динамики, выполняют полный анализ задачи на множество состояний функционирования, решают задачи синтеза алгоритмического обеспечения для управляющего устройства, выбирают стратегию реализации оптимального управления и т. д.

Полный анализ задачи оптимального управления (3) предполагает определение условий существования решения задачи в зависимости от значений компонентов массива R, возможных видов функций оптимального управления (или синтезирующих функций), соотношений для расчёта параметров оптимального управления и границ областей различных видов оптимального управления, а также соотношений для решения обратных задач оптимального управления [5].

Из этого следует, что при создании системы энергосберегающего управления необходимо учитывать значительный объём и сложность вычислений, связанных с проведением полного анализа оптимального управления, которые должны быть оперативно выполнены в реальном масштabe времени управляющим контроллером или компьютером. Это накладывает существенные ограничения на работу системы оптимального энергосберегающего управления с очевидным снижением её эффективности. Одним из возможных способов решения этой проблемы является применение принципов когнитивной графики. Особенность когнитивной графики заключается в совокупности приёмов и методов образного представления условий задачи, которое позволяет либо сразу увидеть решение, либо получить подсказку для его нахождения. В настоящее время методы когнитивной графики используются в искусственном интеллекте в системах, способных вести виртуальное обсуждение задач в их образные представления и т. д.

В результате проведённого полного анализа одной из моделей динамики теплового объекта было получено множество областей существования разных функций оптимального управления.

Вид функции оптимального управления а*(t) определяется значениями синтезирующих переменных A и L. Область существования решения задачи оптимального управления представляет собой объединение областей соответствующих видов функций оптимального управления, при этом границам областей соответствуют частные случаи функции оптимального управления с «закреплёнными» концами траектории.

В качестве когнитивного образа, отображающего области существования видов оптимального управления, представим виды функций оптимального управления, полученные в результате проведённого полного анализа на примере модели динамики реального двойного интегратора. Данный образ может быть записан в память управляющего контроллера и в дальнейшем использован при работе системы оптимального энергосберегающего управления. Это значительно упрощает процесс синтеза управляющих воздействий с учётом возможных изменений состояний функционирования объекта. Исключение процедуры полного анализа оптимального управления в реальном масштабе времени при смене состояния функционирования существенно снижает требования к быстродействию разрабатываемой системы оптимального управления, что положительно сказывается как на себестоимости устройства, так и на уровне его энергопотребления. В то же время геометрический подход ведёт к минимизации ошибок принятия решений, эффективной визуализации состояния объекта управления.

В случае гибридных объектов операции принятия решений легко распараллеливаются, а для разработчиков системы энергосберегающего управления визуализация геометрической структуры возможных областей существования оптимального управления позволяет организовать исследование закономерностей средствами интерактивной когнитивной графики.

Энергосберегающее управление с использованием удалённого доступа. В качестве примера реализации системы управления динамическими объектами рассмотрим систему управления, которая позволяет управлять группой динамических объектов. Объектами управления являются электрические камерные печи типа ПЭ (мощность 16,5 кВт, номинальная температура 1260 °C) и СН (мощность 75 кВт, номинальная температура 1000 °C), а также многоэнергетическая печь (6 зон, мощность 80 кВт, максимальная температура печи 1400 °C).

Вариант технической реализации системы приведён на рисунке. В основе положен приведённый выше принцип исклюения процедур анализа при непосредственном управлении динамическим объектом. В системе предусмотрены регистрации температуры внутри камеры и снаружи печи, решение задач идентификации модели динамики по имеющимся когнитивным графическим образам и синтеза в реальном времени энергосберегающих управляющих воздействий для каждой печи или группы печей. Структура системы энергосберегающего управления включает промышленный многоканальный контроллер (LinCon8000), одновременно управляющий модульными контроллерами, которые, в свою
Вариант реализации системы управления динамическими объектами с использованием когнитивной графики

очередь, управляют группой однотипных печей. Данные модульные контроллеры подключены к внутренней беспроводной сети управления группой печей сети ZigBee через внешние адаптеры. Этот тип сетей является наиболее перспективной технологией построения беспроводных сетей с небольшими объёмами передаваемой информации. Её протокол изначально разрабатывался для объединения в сеть большого количества автономных устройств, например датчиков и устройств управления и мониторинга. Для организации полноценной сети необходимо добавить микроконтроллер с набором управляющих программ, так называемый стек протоколов. Ряд компаний выпускает законченные модули ZigBee. Это небольшие платы (2–5 см²), на которых установлены чип трансивера, управляющий микропроцессор и необходимые дискретные элементы. В управляющий микроконтроллер, в зависимости от желания и возможности производителя, закладывается либо полный стек протоколов, либо иная программа, реализующая возможность простой связи между однотипными модулями.

В последнем случае модули именуются ZigBee-готовыми (ZigBee-ready) или ZigBee-совместимыми (ZigBee-compliant). Все модули очень просты в применении – они содержат широкую рас пространённые интерфейсы (UART, SPI) и управляются с помощью небольшого набора несложных команд. Модули содержат цифровые и аналоговые входы, интерфейс RS-232 и свободную память для прикладного программного обеспечения. Память используется в системе для хранения графических образов, созданных на основе проведённой процедуры полного анализа оптимального управления.

Особенность данной сети как сети управления и мониторинга заключается в том, что она поддерживает не только простые топологии беспроводной связи («точка–точка» и «звезда»), но и сложные беспроводные сети с ретрансляциями и маршрутизацией сообщений с ячейстой топологией при относительно невысоком энергопотреблении. Данные сети называют самоорганизующимися и самовосстанавливающимися, так как ZigBee-устройства при включении питания благодаря встроенному программному обеспечению
умеют сами находить друг друга и формировать сеть, а в случае выхода из строя какого-либо из узлов могут устанавливать новые маршруты для передачи сообщений. Это позволяет без смены общих алгоритмов работы отключать имеющиеся печи или подключать новые.

Используемая технология передачи данных позволяет существенно повысить надёжность системы в целом за счёт особенности стандарта IEEE 802.15.4, что немаловажно для промышленных систем управления и мониторинга. Скорость передачи данных вместе со служебной информацией в сетях ZigBee составляет 250 Кбит/с, что достаточно для управления группой печей. Радиус охвата приёмопередатчиков зависит от многих параметров, в первую очередь от чувствительности приёмника и мощности передатчика.

На открытом пространстве расстояние между узлами измеряется сотнями метров, а в помещении — десятками метров. При этом следует учесть, что зона покрытия сети ZigBee значительно больше, чем расстояние между узлами, так как за счёт ретрансляции сообщений осуществляется наращивание сети, что важно при расширении производства, постройке новых цехов с оборудованием. Также в состав сети входят беспроводные операторские панели, которые позволяют оперативно корректировать циклы термообработки. Нижний уровень данной системы управления подключён к общей корпоративной сети производства через «интеллектуальный» модульный коммутатор.

В состав системы энергосберегающего управления печной группы входят экспертная система, которая содержит сведения, полученные от экспертов, о полном анализе энергосберегающего управления для конкретных четырёх, а также сведения о функциях принадлежностей нечётких множеств, алгоритмах идентификации и др. В базе данных содержится информация о результатах ранее решённых задач энергосберегающего управления, а также когнитивные образы существования видов оптимального управления, полученные в результате проведённого полного анализа. Наличие экспертной системы позволяет разработчику систем энергосберегающего управления разрабатывать необходимые дополнительные графические модули.

Если в базе знаний для полученной модели нет соответствующей четвёрки, то осуществляется поиск наиболее подходящего прототипа модели и четвёрки. Данные о результатах могут быть представлены как в цифровом, так и в графическом виде.

Для централизованного управления тепловыми режимами в печах предусмотрена возможность объединения данной программно-аппаратной платформы в промышленную сеть Ethernet, а также выход в глобальную сеть Internet. Это позволяет передавать данные о работе печей или участка термообработки на единую базу данных и базу знаний с возможностью не только постоянного визуального контроля и накопления данных, но и изменения или корректировки процесса термообработки в режиме удалённого доступа.

Для управления печами используется обобщённый алгоритм, в котором сочетаются методы синтезирующих переменных и нечёткой логики. Предусмотрен режим адаптации с автоматической коррекцией параметров модели и функций принадлежности нечётких множеств, которые по окончании режима адаптации записываются в память контроллера для последующего использования [6].

Повышение эффективности систем энергосберегающего управления. Опыт проведения работ по созданию систем энергосберегающего управления для различных объектов показывает, что в ряде случаев не удаётся получить ожидаемый эффект. Причинами этого в основном являются неполные проведение исследований при формализации задач оптимального управления, низкая точность моделей динамики, недостаточное использование возможностей математического аппарата анализа и синтеза оптимального управления и современных информационных технологий.

Рассмотрим основные проблемы повышения эффективности систем энергосберегающего управления. Начальный этап исследований оказывает существенное влияние на риск успешной разработки и внедрения системы энергосберегающего управления. Для этого должны быть решены следующие проблемы:

разработка методов и алгоритмов прогнозирования ожидаемого эффекта энергосбережения, учитывающих долю функционирования объекта в динамических режимах, потери энергии математических моделей, влияние возникающих воздействий, потребление энергии управляющими и исполнительными устройствами;

создание интеллектуальных баз данных, содержащих информацию о результатах использования системы энергосберегающего управления для различных классов объектов (тепловых машин, машин с электроприводами и др.);

разработка методик введения расширенного множества состояний функционирования, учитывающего возможные ситуации, которые могут иметь место для объекта в условиях реальной эксплуатации;

создание методов для автоматизированного формирования множества альтернативных вариантов постановок задачи оптимального управления, их сравнения, оценки рисков и определения наиболее предпочтительных.
В связи с этим особенно актуальны исследования по следующим направлениям:

построение модели динамики сложных объектов с распределёнными параметрами и приведение их к виду, позволяющему выполнить полный анализ задачи оптимального управления на множестве состояний функционирования синтез управляющих воздействий в реальном времени и совмещённый синтез оптимального управления;

разработка методов «быстрой» идентификации моделей с большим числом параметров, в том числе коэффициентов дифференциальных уравнений, времени запаздывания по различным каналам управления и возмущения, времени переключения для дифференциальных уравнений с разрывной правой частью;

разработка моделей, позволяющих прогнозировать изменения возмущающих воздействий и состояний функционирования.

Заключение. Область применения полученных результатов по энергосберегающему управлению достаточно широка и не ограничивается только динамическими объектами с нагревом.

Использование графических образов, получаемых в результате полного анализа оптимального управления, значительно упрощает обработку данных, следовательно является снижение требований к быстродействию технических средств, что положительно сказывается как на их стоимости, так и на повышении эксплуатационных удобств за счет визуального представления состояния объекта.

Большие возможности появляются при реализации удалённого доступа и управления пространственно-распределенными объектами. Удалённый доступ повышает возможности масштабного контроля процессов. Это особенно актуально для предприятий и компаний, которые имеют множество представительств в различных странах и могут из центрального офиса следить и управлять всеми технологическими процессами дочерних филиалов.

Сочетание возможностей когнитивной графики и удалённого доступа существенно упрощает процедуру идентификации объектов, внедрение и отладку энергосберегающих алгоритмов управления и, как следствие, повышает экономическую эффективность эксплуатации оборудования.

Опыт проведения работ по созданию систем оптимального энергосберегающего управления динамическими объектами, выполняемых на кафедре «Конструирование радиоэлектронных и микропроцессорных систем» Тамбовского государственного технического университета, подчеркивает, что эффект от их внедрения достаточно высок и может достигать 30 % и более, особенно для гибридных объектов.

Библиографические ссылки

1. Муромцев Ю.Л., Чернышов Н.Г., Орлова Л.П. Математическое и программное обеспечение микропроцессорных систем энергосберегающего управления // Автоматика и вычислительная техника. 1996. № 6. С. 26–34.

Специфика построения панелей управления систем ЧПУ по типу универсальных программно-аппаратных компонентов

Предложено архитектурное решение для построения терминальной части современных систем ЧПУ. Раскрыты механизмы программной эмуляции для аппаратной реализации панелей управления. Приведены практические примеры использования микроконтроллеров и контроллеров электроавтоматики при построении терминальной части систем ЧПУ. Работа выполнена по Госконтракту № П693 на проведение НИР в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 гг.

Ключевые слова: система ЧПУ, микроконтроллер, программируемый логический контроллер, панель оператора, станочная панель, электроавтоматика станка.

Architectural decision for modern CNC systems terminal part construction is proposed. Program emulation machinery for control panels are disclosed for hardware realization. Practical examples are resulted for using microcontrollers and electroautomatics controllers at construction CNC terminal part. Work is performed in accordance with state contract № П693 on NIR (scientific-research work) fulfill in the framework of FSP (Federal target program) «Scientific and scientific-pedagogical personnel of innovative Russia» for 2009—2013.

Key words: CNC system, microcontroller, programmed logical controller, operator panel, machine-tool panel, machine-electroautomatic.

Введение. Необходимость в разработке собственных устройств и приборов для систем управления оправдывает себя только при недостаточности конструкторских решений на рынке. Панель оператора и станочная панель традиционно разрабатываются согласно специфическим требованиям конкретного станкостроителя.

Вне зависимости от происхождения программно-аппаратных средств (покупные изделия или оригинальное производство) возникает вопрос об их интеграции в системы управления. При этом определяющими факторами становятся: открытость архитектуры системы управления [1, 2] и используемых технологий, наличие стандартизованных интерфейсов взаимодействия с драйверами встраиваемых устройств.

Практически все системы ЧПУ выпускаются с панелями управления, но каждый производитель использует свое решение. Проблема заключается в отсутствии единых подходов и стандартов реализации.

Подключение панелей управления в двухконтурную архитектуру системы ЧПУ. Терминальная часть системы ЧПУ имеет модульную архитектуру (рис. 1). В её состав входят:

— панель оператора, содержащая жидкокристаллический монитор с широким углом обзора (не менее 150° по горизонтали и вертикали), и ряд машинных и функциональных клавиш;
— станочная панель, управляющая функционалом системы ЧПУ;
— компьютер промышленного исполнения, реализующий терминальную задачу управления системой ЧПУ;
— клавиатура промышленного исполнения для ввода текстовой информации.

Применение микроконтроллеров на основе процессора ARM при реализации панелей оператора предоставляет ряд преимуществ:
— компактность устройств;
— программирование на привычных для разработчиков языках ANSI C и C++, что сокращает время разработки;
— поддержка стандартных каналов связи с периферийными устройствами, таких как USB, RS-485;
— возможность быстрого перепрограммирования непосредственно на объекте управления через USB-порт;
— возможность подключения по каналу связи RS485 для взаимодействия в режиме реального времени;
— возможность отладки управляющих программ контроллеров непосредственно на панели оператора;
— работа в промышленном диапазоне температур.
Рис. 1. Подключение панелей управления системы ЧПУ

Рис. 2. Обобщённый вид станочной панели с двумя маховичками
Таблица 1

<table>
<thead>
<tr>
<th>Тип</th>
<th>Механизм работы</th>
<th>Элементы управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>Механический замок</td>
<td>Активирует систему при повороте уникального ключа</td>
<td>Замковый переключатель, блокирует кнопку запуска приводов и используется для санкционированного доступа к станку</td>
</tr>
<tr>
<td>Кнопки с фиксацией</td>
<td>Кнопка с фиксацией нажатия</td>
<td>Аварийный останов, останавливает привод и шпиндель с последующим отключением привода станка. При этом система ЧПУ и контроллер PLC не должны обеспечиваться</td>
</tr>
<tr>
<td>Кнопки без фиксации</td>
<td>Кнопки без фиксации нажатия</td>
<td>Кнопка запуск приводов, включает силовое питание на приводы</td>
</tr>
<tr>
<td>Радиокнопки</td>
<td>Группа кнопок, лишь одна из которых активна.</td>
<td>Кнопки переключения режимов: реферирования оси, ручной, возврат на контур, полув автоматический режимы, ввод автоматических режимов. Управления программой: запуск программы, останов программы. Кнопки выбора осей. Управление шпинделем: пуск шпинделя, останов шпинделя</td>
</tr>
<tr>
<td>Импульсные кнопки</td>
<td>Кнопка активна лишь в момент её удержания в нажатом состоянии</td>
<td>Сброс канала, перемещение оси в положительном и отрицательном направлениях</td>
</tr>
<tr>
<td>Кнопки с «памятью»</td>
<td>При однократном нажатии кнопка активируется, при последующем нажатии деактивируется.</td>
<td>Управление ручным режимом, включение ускоренного перемещения, реверс шпинделя</td>
</tr>
<tr>
<td>Потенциометры</td>
<td>Обеспечивают ступенчатую регулировку параметров</td>
<td>Корректор шпинделя, корректор подачи регулируют частоты вращения шпинделя и подачу соответственно</td>
</tr>
<tr>
<td>Маховички (штурвалы)</td>
<td>Управление приводами в ручном режиме</td>
<td>Штурвал 1, штурвал 2.</td>
</tr>
</tbody>
</table>

Таблица 2

<table>
<thead>
<tr>
<th>Байт</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Значение</td>
<td>ENQ</td>
<td>Адрес устройства</td>
<td>K</td>
<td>A</td>
<td>Контрольная сумма</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таким образом, применение готовых встраиваемых типовых решений на базе ARM является достаточно гибким и расширяемым по функциям программного обеспечения.
Станочная панель (рис. 2) включает в себя элементы управления, которые систематизированы в табл. 1.
Выбран интерфейс связи RS-485 в силу его доступности и широкого выбора на рынке оборудования для его реализации, а также из-за его высокой устойчивости к помехам и дешевизны решений.
На основе интерфейса RS-485 был реализован протокол взаимодействия панелей управления с системой ЧПУ, в котором в качестве ведущего устройства выступает ядро реального времени, а в качестве ведомых — терминальная панель оператора и станочная панель.
Формирование протокола обмена данными с панелями оператора. К протоколу предъявляют следующие ключевые требования:
высокая скорость обмена данными при работе со станочной панелью;
возможность расширения;
обеспечение совместимости с предыдущими версиями;
простота реализации.
Опрос аппаратных элементов управления панелей терминальной части производится с установленным периодом в 20 мс. Такая частота опроса реализуется при установленной скорости соединения RS-485 в 921600 бит/с. Команда запроса предусматривает 6 байт и имеет обобщенный формат, представленный в табл. 2.

Тип запроса определяется в трёх и четырёх байтах пакета:
KA — чтение всего состояния клавиатуры, при котором запрашиваются все данные о нажатых между опросами клавишах панели управления, положения переключателей и абсолютные значения положения штурвалов;
KC — чтение текущего состояния клавиатуры, реализуется посредством запроса информации только об изменениях, произошедших между опросами;
KB — чтение текущих данных только о нажатии клавиш панели.

Информация о нажатых или зажатых клавишах передается в виде скан-кода в обязательной части пакета данных протокола обмена данными (табл. 3). Необязательная часть пакета передается только в случае запроса KA и KC.

Запрос чтения текущего состояния клавиатуры (KC) включает в необязательную часть запроса только данные об изменявшихся значениях. Например, если за время интервала опроса оператор вращает лишь один штурвал, то в необязательную часть пакета добавляются байты данных об абсолютном положении этого штурвала.

Пакет данных чтения состояния панели оператора может иметь различную длину. Минимальный размер пакета данных чтения состояния панели составляет 18, а максимальный — 28 байт. Набор частей пакета определяется в байте конфигурации (третий байт). Байт конфигурации устанавливается в соответствующее значение по мере необходимости включения или не включения информации об изменениях положения переключателей и штурвалов панели.

Способ универсального подключения панели управления к системе ЧПУ. Разработка и отладка механизмов работы ядра системы ЧПУ должна производиться на той же исполнительной платформе, под которой она будет функционировать (в данном случае в среде Linux). Однако имеется возможность использовать все преимущества интегрированных сред разработки платформы MS Windows [3], таких как, например, MS VisualStudio, которая обладает более широким инструментарием разработки кода приложений и диагностики его исполнения. Для этого была применена библиотека Cygwin, которая реализует интерфейс прикладного программирования POSIX на основе системных вызовов Win32. Библиотека Cygwin предоставляет набор свободных программных инструментов, которые позволяют превратить операционную систему MS Windows в некоторое подобие UNIX-системы.

Обеспечение совместимости достигается посредством классов оболочек (wrappers), инкапсулирующих платформо-зависимые API-вызовы (рис. 3). Классы и модули, реализующие логику работы ядра системы управления, используют предоставляемые уровнем оболочек функции, что обеспечивает им платформо-независимую реализацию.

Код функций классов оболочек имеет две реализации, разграниченные соответственно глобальными флагами:

_win32: с применением функций среды Windows или функций Cygwin, для которых в Win32 API нет аналогов;
_linux: с применением вызовов функции платформы Linux.

Например, функции для управления процессами под Linux используют механизм сигналов на основе функции sigaction, который удобнее использовать по сравнению с функцией signal из Win32 API. Функция обращения к функции sigaction имеет двойную реализацию, где в части _win32 производится обращение функции импорта из библиотеки Cygwin.

<table>
<thead>
<tr>
<th>Байт</th>
<th>Значение</th>
<th>Адрес устройства</th>
<th>Байт конфигурации пакета</th>
<th>Биты скан-кода 1</th>
<th>Биты скан-кода 2</th>
<th>Положение переключателя 1</th>
<th>Положение переключателя 2</th>
<th>Абсолютное положение штурвала 1</th>
<th>Абсолютное положение штурвала 2</th>
<th>Контрольная сумма</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4x</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4...9</td>
<td>10</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Таблица 3
Инструментарий библиотеки Cygwin позволяет в среде Windows:
проверять правильность Linux-синтаксиса кода; осуществлять сборку программной библиотеки с помощью компилятора gcc;
выполнять программный код, а также с помощью отладчика gdb производить отладку из набора Cygwin.

Естественно, что ограничениями на выполнение функций ядра в среде Windows будет отсутствие реального времени и ограниченные возможности по использованию аппаратных устройств (таких как, например, платы ввода — вывода для взаимодействия с приводами и контроллерами электроавтоматики).

Создан эмулятор станочной панели, реализующий её функции. Эмулятор станочной панели применяют в обучающих версиях систем ЧПУ, избегая необходимости использования аппаратных панелей управления.

Механизм передачи данных (рис. 4) от аппаратных панелей станка или от их программных эмуляторов на терминальную часть системы управления идентичен. Идея заключается в том, что в ядре системы область памяти, предназначенная для хранения данных о состоянии внешних устройств, распределяется один раз (поз. 1 на рис. 4). Поток опроса устройств (поз. 1.1) циклически запрашивает данные у станочной панели, контроллеров электроавтоматики, у прочих требуемых устройств и записывает их в специальную область. Далее поток обновления данных (поз. 2.1) сканирует область данных и обновляет поля объектов данных внешних устройств (машинных клавиш — CMKey, функциональных клавиш — CFKey, клавиши станочной панели — CNCKey, переключателей — CNCSselector, штурвалов — CNCWheel), выставляя в измененных объектах флаги о том, что данные об объекте изменены и требуют отправки в терминальную часть. В свою очередь, поток событий (поз. 3.1) обрабатывает объекты с выставленным флагом и посылает протокол TCP/IP серверу (поз. 3) информацию об изменениях в объектах данных. На основе этой информации сервер формирует пакеты об обновлениях в состоянии устройств, которые отправляются в терминальную часть системы управления.

Преимущества предложенного механизма следующие:
возможность реализации асинхронного взаимодействия с драйверами устройств посредством применения нескольких потоков;
независимость от источника данных: из реальных панелей или от их программных аналогов (механизм работы с ними в ядре идентичен);
данные о состоянии панелей управления предоставляются одновременно как в ядре реально- го времени, так и в терминальную часть.

Открытость архитектуры рассматриваемого программного обеспечения предоставляет станкостроителям возможность использования машинных клавиш терминальной панели для реализа-
ции собственных функций управления электротехнической станцией.

Механизм программирования и работы М-клавиши терминальной панели. Машинные клавиши (М-клавиши) панели оператора системы ЧПУ привязывают к функциям электротехники - это может быть вызов функции принудительного включения охлаждающей жидкости, отвод стружки и т.д. Логика их работы под конкретный станок реализуется станкостроителем [3]. Разработчики систем ЧПУ предоставляют лишь механизм программирования М-клавиш.

Параметры, необходимые для отображения строк и картинок на функциональных М-клавишах, хранятся в XML-файлах настройки. Эти файлы формируются на основе XSD-схем (рис. 5). Программное обеспечение системы ЧПУ, отвечающее за настройку параметров отображения на М-клавишах, осуществляет визуализацию параметров на экране оператора в соответствии с XML-файлом. В XML-документе указываются регистры программируемого логического контроллера (ПЛК), из которых считаются данные, необходимые для формирования визуально-
Рис. 6. Схема взаимодействия панели оператора, системы ЧПУ и ПЛК электроавтоматики станка

го представления элементов управления панели оператора. Данные в этихregistрах используются управляющей программой, предварительно загруженной на ПЛК.

Схема взаимодействия панели оператора системы ЧПУ и ПЛК электроавтоматики станка представлена на рис. 6. Информация о нажатии одной из M-клавиш поступает в ядро реального времени системы ЧПУ и далее перенаправляется в ПЛК. Контроллер на основе заложенного в него алгоритма выдаёт на выходные регистры данные, которые используются для визуализации панели оператора.

Заключение. Предложенный способ построения панелей управления не накладывает жёстких ограничений на интерфейс подключения панелей к системе ЧПУ и может быть использован с разными соединениями, сохраняя при этом протокол обмена данными.

Унифицированное решение по подключению реальной и виртуальной станочной панели позволяет разрабатывать и тестировать программное обеспечение системы ЧПУ автономно.

Открытость архитектуры электроавтоматики системы ЧПУ на уровне станкостроителя реализуется на базе предложенного механизма программирования машинных клавиш и строк состояния.

Библиографические ссылки

AGENTS – ASSISTANTS IN E-BUSINESS

Kлючевые слова: agent-pomoshchnik kupatelya, megaagentynaya platforma trgovli, internet-magazyn, processy vospriyatiya i obucheniya agentov.

Intellectual program-assistants application in the electronic trading appositions is considered. Multiagent system model for trade in the Internet network is described. Teaching processes versions of the custom agent-assistance in the internet-shop structure are proposed.

Key words: the custom agent-assistance, multiagent trade platform, the internet-shop, agent’s perception and teaching processes.

Введение. Современный этап работ в области искусственного интеллекта (ИИ) основан на подходе проектирования интеллектуальных агентов. Наиболее важным примером среди для деятельности программных агентов может слушить Internet. Сегодня редко можно увидеть интернет-ресурсы, в структуре которых интегрированы агенты-помощники. Системы агентов, предназначенные для выработки рекомендаций, имеют большие перспективы применения в приложении электронной коммерции.

Заинтересованность владельцев интернет-магазинов в программных агентах, способных помочь потенциальному клиенту сделать покупку на основе каких-либо убеждений или предпочтений, является стимулом к развитию направления создания агентных систем сопровождения покупателя.

Целесообразность создания агентов-помощников, их роль в современном мире. Желание упростить стиль общения конечного пользователя с компьютерными программами является причиной появления интеллектуальных программ посредников — агентов. Билл Гейтс в работе [1] определяет агента как программу, в которой захоложена некая личность, общение с которой похоже на то, как будто вместо себя Вы отправляете на поиски своего помощника. Задача агента сводится к одному — помогать. Как помощ, агенты «до-гадываются» согласно своей истории восприятия, формирующейся на основании взаимодействия с человеком. Последовательность развития агента — это полная история всего, что было когда-либо воспринято агентом [2]. Можно предположить, что выбор агента действия в любой конкретный момент зависит от всей последовательности актов восприятия. Агент-помощник должен обладать способностью не только собирать информацию, но и обучаться на основании тех данных, которые получает.

Рассмотрим представление агентов-помощников в многоагентной системе (MAC), под которой для торговли в Интернете будем понимать совокупность программного обеспечения, включающего интернет-магазин и многоагентную платформу. Модель многоагентной платформы изображена на рис. 1 [3] и состоит из базы платформы и множества агентов различных типов, один из которых агент-помощник покупателя. Веб-сервер, на котором возможно разместить интернет-магазин, может стать местом дислокации базы платформы.

Стартовая страница интернет-магазина, расположенного на web-сервере, является точкой входа для работы с системой. В странице встроена форма авторизации клиента. После регистрации посетитель может заказывать продукцию в интернет-магазине.

Каждому зарегистрированному пользователю ресурса поставляется программный модуль «агент-заказчик», роль которого заключается в...
осуществлении проводок по реализации услуги, предлагаемой магазином. Агент может принять заказ и сделать пометку о нём, послав сообщение агенту-хранителю базы данных заказов. Агент-заказчик создаётся каждый раз, когда авторизуется пользователь.

Агент-хранитель базы данных создаётся в одном экземпляре для каждой платформы, и только он имеет доступ к базе заказов через драйвер.

Агент-оценщик состояний заказов на основе переговоров с агентом-хранителем базы данных может строить прогноз на покупку новой партии товара. При этом он создаёт нейронную сеть для каждой учётной записи по статистике предыдущих сделок и предлагает возможный выбор продукта.

Агент-web-скрепщик исследует Интернет для сбора и агрегирования информации о стоимости аналогов на товары и услуги, предлагаемые магазином. Конкурентное ценообразование — не единственная функция агента. Агент-web-скрепщик может индексировать дружественные по тематике интернет-ресурсы и занести их адреса в некоторую таблицу базы данных.

Агент-наблюдатель — это некоторого рода агент-осведомитель. Все агенты платформы сообщают о своих действиях агенту-наблюдателю, который информирует владельца платформы о всех переговорах, ведущихся агентами.

Агент-помощник покупателя осуществляет функции информатора. На основе общения с агентом-оценщиком заказов и агентом-web-скрепщиком, агент-помощник способен предложить более предпочитительный товар для клиента, рассказать о ценах конкурентов и дать ссылки на дружественные по тематике интернет-ресурсы. Выдача справок и путеводитель по интернет-магазину также являются функциями агента. Средства агента-помощника можно использовать в его интерфейсе, организуя, к примеру, контекстное меню персонажа агента. Пункты этого меню будут побудительным элементом воздействия на помощника, при котором начинают выполняться необходимые операции.

Восприятие агента-помощника можно организовать на основе отслеживания текущего состояния сеанса клиента в интернет-магазине. Нажатие кнопки клавиатуры и щелчки мыши на некоторых веб-страницах ресурса могут сохраняться в таблице поведения клиента с номером, соответствующим уникальному идентификационному номеру агента-заказчика. Очевидно, что для каждого клиента будет создана своя таблица в базе данных. Записи в рассматриваемых таблицах добавляются на протяжении всех сеансов посещений интернет-магазина. Агент, обладая возможностью построения нейронных сетей по сеансовым данным кlien-

![Diagram](image)

Рис. 1. Модель многоагентной платформы интернет-магазина
та, способен побудить его к некоторым действиям, например перейти на наиболее часто просматриваемую страницу ресурса или посетить страницу, которая ни разу не была открыта.

Необходимо указать на различие между программой агента, принимающей в качестве вводных данных результаты текущего восприятия, и функцией агента, которая воспринимает всю историю пользователей [2].

Одной из функций, которую можно реализовать в агенте-помощнике, является проявление способности к поддержанию разговора с клиентом. Интернет-магазинов, наделённых возможностью вести диалог с покупателем с помощью виртуального собеседника, мало. При разработке агента-собеседника необходимо учитывать не только умение программировать, но и знать психологию человека, а также принципы построения фраз русского языка [4]. Приемлемых результатов позволяют добиться даже не очень сложные алгоритмы. В интерфейсе агента-помощника должно содержаться поле для диалога с клиентом. Фраза, введённая человеком, обусловливает следующие действия:

фраза пользователя не анализируется. В ответ выдается случайная фраза, что кажется примитивным, однако при умелом подборе фраз и большом их количестве использование именно этого метода становится очевидным программисту не сразу;
во фразе пользователя ищутся ключевые слова. Каждое слово-стимул вызывает ответный ход агента. Предыдущие фразы не учитываются;
в диалоге учитывается не только последняя фраза человека, но и предыдущие фразы (в простейшем случае — две-три фразы, в более сложном — весь предшествующий разговор). Диаграмма; напоминает некоторый граф, а ответная реплика выбирается в зависимости от того, на какой вершине графа она находится. Вершина, к которой нужно перейти после произнесения реплики, выбирается в зависимости от фразы, сказанной человеком;
выходящим агентом фраза не выбирается из числа готовых, а формируется заполнением некоторого шаблона словами из базы данных в зависимости от контекста разговора.

Способность агента-помощника к обучению может либо присутствовать, либо нет. Интерес вызывают собеседники, способные обучаться непосредственно во время разговора. Каждая фраза пользователя во время диалога заносится в базу, но при этом агент начинает «глупеть», а размер базы расти. Выход из ситуации — предварительный анализ, при котором в хранилище выражений попадают лишь фразы, относящиеся к значимым темам интернет-ресурса, или наиболее часто встречающиеся реплики. В этом случае агент «умеет» достаточно быстро, даже если алгоритм анализа фразы примитивен.

Концептуальные компоненты агента-помощника. Количество средств приобретения различных товаров через Интернет с каждым годом увеличивается. По данным поисковой системы «Яндекс», доверие пользователей к покупкам в режиме реального времени значительно возросло по сравнению с предыдущим годом.

Конкуренция заставляет программистов постоянно изыскивать новые идеи в организации интернет-магазинов. Торговая площадка с интегрированным агентом-помощником может выделяться среди остальных конкурентов.

Проектирование и реализацию виртуального ассистента будем рассматривать с позиции полезности агента. Спецификации функции полезности позволяет принимать рациональные решения. Во-первых, если имеются конфликтующие цели, то функция полезности находит приемлемый компромисс. Во-вторых, если у агента несколько целей, к которым он стремится, то функция полезности оценивает вероятность успеха с учётом важности целей [2].

Структура агента-помощника, основанного на полезности, показана на рис. 2.
«Как сейчас выглядит мир?» На самом деле агент-помощник даже не подозревает, как развивается мир, в котором он существует. Тем не менее он обладает информацией, получая сообщения от агента-оценщика состояний заказов и агента-веб-скребка.
Первоначально агент-помощник обладает множеством методов для осуществления функций сервиса-типа и посредника-информатора. Соответственно, на вопрос «Что будет, если я выполнишь действие A?» агент уже имеет ответ. Часть действий, о которых агент действительно ничего не знает, имеют место в том случае, когда клиент обрабатывает запросы через аналоговое окно. Некоторые из новых действий на задаваемые вопросы клиента должны быть согласованы с администратором платформы. Примером неправильного запроса может быть желание клиента посетить агента-помощника, открывать страницу с перечнем продукции 1000 раз подряд, при котором интернет-магазин перестанет функционировать. Множество действий агентов не попадут под категорию «возможных к выполнению», и потребуется корректировка программного кода. При проведении действий агент-помощник может предсказать развитие ситуации, но не может знать наверняка, что будет в конечном итоге. Прогнозировать развитие ситуации можно двумя способами. Первый способ состоит в анализе истории восприятия агентом сеансов посещений клиента. Второй — более чёткий. Клиент предлагает выполнить агенту именно то действие, которое он хочет. При этом действие должно соответствовать требованиям политики агента.
Восприятие через:
диалог с клиентом;
общения, получаемые от агента-оценщика, агента-web-скребка;
анализ истории посещения интернет-ресурса клиентом.

Как сейчас выглядит мир?

Что будет, если я выполню действие А?

Какую пользу клиенту принесет это состояние?

Какое действие выполнить?

Исполнительные механизмы

КЛИЕНТ

АГЕНТ-
ПОМОЩНИК

Рис. 2. Структура агента-помощника покупателя

«Какую пользу клиенту принесет это состояние?» Заботиться об описании состояния должен непосредственно клиент. Когда характер действий, производимых агентом-помощником, соответствует интересам клиента, последний способен сообщить об этом агенту ключевой фразой, доказывающей полезность действия. Ключевой фразой может служить выражение «это полезно для меня». В случае, когда клиент не желает, чтобы агент осуществлял какие-либо действия, ключевая фраза «это не нужно мне», отменяет выполнение.

Функциональная составляющая «Какое действие выполнить?» требует процедуры анализа. Использование блоков, описанных выше, очевидно.

Агент-помощник имеет базу рассуждений и способность учиться. Помощник может подстраиваться под клиента посредством ключевых фраз.

Заключение. Таким образом, в настоящее время доминирует стиль взаимодействия пользователя с компьютером, при котором запуск задачи и ее управление осуществляются непосредственно человеком. Идея упростить общение с компьютерными программами привела к созданию нового вида программного обеспечения, основными функциями которого стали помощь и посредничество. Создание агентов-помощников — очередная попытка интеллектуализации пользовательского интерфейса.

Выше рассмотрена целесообразность создания агентов-помощников и их роль в современном мире. Предложена модель многоагентной платформы для торговли в сети Интернет. Один из агентов системы является помощником покупателя, посредником и сервис-гидом в одном лице. Показана структура агента-помощника, основанного на полезности. Предполагаются различные подходы к обучению агента. В процессе обучения необходимо учитывать качество обратной связи с клиентом. При этом улучшается общая производительность агента.

Библиографические ссылки

NXP выпустила микросхему контроллера светодиодов с регулировкой мощности SSL2103 для создания энергосберегающих осветительных систем

Компания NXP Semiconductors, ведущий поставщик наборов микросхем для энергосберегающих систем освещения на базе интегральных микросхем, объявила о выпуске нового контроллера для светодиодов SSL2103. Микросхема SSL2103 является расширением успешного семейства AC/DC LED-драйверов NXP (SSL2101/SSL2102), используемого в широком диапазоне применений в области освещения, таких как модернизация существующих ламп, и имеет функционал и производительность своего предшественника — контроллера SSL2101, обеспечивая при этом возможность применения в системах освещения большей мощности. SSL2103 — это многофункциональное устройство для всех сегментов рынка светодиодных светильников с питанием переменным или постоянным током, обладающее расширенным диапазоном используемых мощностей и совместимое с большим числом димеров, что обеспечивает возможность его применения в светодиодных светильниках как с регулировкой, так и без регулировки мощности. Кроме того, в каждом продукте семейства SSL210x интегрированы одни и те же функции контроллера в целях упрощения его использования в широком диапазоне светодиодных осветительных систем.

Компания NXP также объявила о том, что с момента ввода на рынок весной 2009 года было продано свыше 10 миллионов контроллеров SSL2101. Устройства SSL2101 и SSL2102 — это хорошо зарекомендовавшие себя и полностью интегрированные микросхемы драйверов светодиодов с регулировкой мощности, идеально подходящие для сверхкомпактных решений с низким энергопотреблением (ниже 25 Вт в конфигурациях с внешним балластом или ниже 15 Вт для ламп с обратно совместимым форм-фактором). Микро-схема SSL2103 рассчитана на использование в более мощных светодиодных системах (PAR20, PAR30 и PAR38) и обеспечивает разработчикам ламп полную свободу при выборе мощности, форм-фактора и систем регулировки освещения.

«По мере реализации мировой индустрией осветительных систем принципа «цифрового освещения» в лампы встраивается все больше электроники, в результате чего появляются интеллектуальные, более энергосберегающие и долговечные альтернативы лампам накаливания. Будущее за светодиодами, — говорит Жак де Бер (Jacques le Berre), директор по маркетингу направления осветительных систем компании NXP Semiconductors. — Мы гордимся успехом нашего контроллера SSL2101, поскольку он показывает, что наша продукция отвечает требованиям рынка в области светодиодов и стимулирует отрасль к разработке более энергосберегающих систем освещения».

Микросхема SSL2103 имеет тот же функционал и производительность, что и контроллеры SSL2101 и SSL2102, расширяя при этом область применения системам освещения большей мощности. Это достигается благодаря использованию внешних переключателей питания и возможности работы с балластами как с регулировкой, так и без регулировки мощности. При своем конструктивном сходстве с предыдущими версиями контроллер SSL2103 способен обеспечить срок службы свыше 75 000 часов при номинальной рабочей температуре. Продукты компании NXP для светодиодов с питанием переменным и постоянным током поддерживают широкий диапазон материалов и могут применяться как в изолированных, так и в неизолированных лампах. Кроме того, их можно использовать в сетях напряжением 100, 110 и 230 В и в форм-факторах для ламп E27, GU10 и PARx. В портфель продуктов также входят интегрированные переключатели и цепи делителя напряжения, обеспечивающие малые размеры устройства и экономию места на печатной плате.
Формализация алгоритма синхронизации процессов при диспетчеризации задач в многооперационных системах с использованием механизма «рандеву». Информационные технологии. 2009. № 12.

Рассмотрены вопросы формального представления алгоритмов синхронизации взаимодействующих процессов, действующих в параллельных вычислительных системах, при выполнении диспетчеризации задач, находящихся в очереди к процессорам типа FIFO. В алгоритмах синхронизации применяются механизм «рандеву» и прищеп «монитор». Для формализации использовалась логика недетерминированных автоматов. Получены уравнения, описывающие процедуры клиента и серверной частей алгоритма синхронизации с учётом принятой дисциплины обеспечения приоритетности и взаимоисключения процессов при выборе исполнителей задач (процессоров).

Приведено описание совершенствованной методики решения многовariantных неформализованных задач класса выбора и принятия решений, являющихся наиболее распространённой категорией производственных задач. Для моделирования и решения указанных задач созданы специальные программные средства.

Рассмотрен вопрос повышения точности относительного движения инструмента и заготовки при токарной обработке. Одной из причин, ограничивающих повышение точности, является несвоевременная подача корректирующих сигналов в систему управления приводом. Для решения этой задачи используется параллельная модель процесса резания. Моделирование осуществляется на персональном компьютере одновременно с обработкой заготовки, корректирующий сигнал с модели подаётся в блок управления приводом с опережением сигналов обратных связей. Приведены результаты моделирования и экспериментальной проверки точности обработки.

Система поддержки принятия решений как результат интеграции статистических пакетов и баз данных. Вестник компьютерных и информационных технологий. 2009. № 12.

Предложен метод построения медицинских систем поддержки принятия решений на основе интеграции двух современных информационных систем — статистических пакетов прикладных программ, в которых реализованы мощные вероятностно-статистические методы, и баз данных с практически неограниченными возможностями по хранению, обработке и представлению информации. Разработана простая в реализации система идентификации тяжести состояния больных, в которых автоматизированы процедуры импорта, экспорта данных и решения задачи классификации больных по степени тяжести состояния, благодаря интеграции на принципах системного анализа программы Statistica и базы данных MS Access.

Моделирование управления блокированием подвески многоосного автомобиля. Грузовик. 2009. № 12.

Приведены основы методики определения технической эффективности блокирования подвески колёс по свойству поперечной устойчивости. Рассмотрены математическая модель многоосного автомобиля, порядок построения системы автоматизированного управления и расчётная схема системы.

Трение качения цилиндра по шероховатой поверхности. Трение и смаزка в машинах и механизмах. 2009. № 12.

Трение качения шероховатого цилиндра по шероховатой поверхности представлено как результат пластических деформаций микровыступов эквивалентного шероховатого слоя. Получено решение для коэффициента сопротивления качению при нагрузках, когда контактные напряжения не превышают предела текучести, а шероховатость поверхностей приводит к увеличению площади контакта.

Особенности высокопроизводительных станков для калибрования зубьев цилиндрических колёс средних модулей. Упрочняющие технологии и покрытия. 2009. № 12.

Рассмотрены вопросы производства зубчатых колёс автомобилей с использованием высокопроизводительных зуборезных станков, работающих по способу холодного калибрования зубьев одним, двумя и тремя накатниками, а также варианты автоматизации этих станков при обработке колёс-дисков и колёс-валов.
Управление системой испытания двигателей на основе математической модели. Сборка в машиностроении, приборостроении. 2009. № 12.

Проведена декомпозиция процесса управления автоматизированными стендами испытания двигателей внутреннего сгорания (ДВС) на основе нечёткой логики. Предложена схема управления регулятором топливного насоса высокого давления. Построена структурная схема автоматизированной системы управления ДВС на основе нечёткой логики.

Рассмотрены предпосылки развития нанотехнологических производств в условиях глобализации рыночной экономики и полной компьютеризации производства на основе сетевых информационных технологий. Определены принципы формирования распределённых производственных систем и виртуальных предприятий на основе технологической гиперсреды с использованием CALS- и PLM-технологий информационной поддержки жизненного цикла изделий. Рассмотрены системные аспекты создания виртуальных предприятий и их единого информационного пространства для изготовления нанотехнологической продукции.

Рассмотрены вопросы определения степени психофизиологического соответствия «эталонным» характеристикам профессионально пригодных водителей и даны рекомендации по методам и приёмам вождения, позволяющим компенсировать недостаточное развитие профессионально значимых качеств в случае их несоответствия критериальным нормативам.

Роторные сопротивления и динамические процессы при пуске асинхронного двигателя шахтной подъёмной установки. Горное оборудование и электромеханика. 2010. № 1.

Предложена новая методика расчёта величин роторных сопротивлений и впервые выполнено математическое моделирование динамических процессов при пуске асинхронного двигателя шахтного подъёма. Результаты исследований позволяют повысить надёжность и экономичность эксплуатации шахтных подъёмных установок.

Моделирование диффузионных процессов через барьерное покрытие в полупроводниковых ветвях термоэлектрических модулей. Нано- и микросистемная техника. 2010. № 1.

Проведено двухэтапное математическое моделирование диффузионных процессов, протекающих в термоэлектрическом модуле. На первом этапе разработана математическая модель процессов диффузии материалов многослойной конструкции полупроводниковой ветви, барьерного покрытия и припаянного медного проводника без учёта дефектов данных материалов. На втором этапе разработана математическая модель с учётом дефектности материалов данной многослойной конструкции. Получены результаты математического моделирования, которые показали, что именно степень дефектности слоёв барьерного покрытия в большой степени влияет на скорость протекания процессов диффузии, нежели тип материала барьерного покрытия.

Децентрализованное адаптивное управление с идентификацией и модельной координацией в мультиагентных системах. Мехатроника, автоматизация, управление. 2010. № 1.

Обоснована методика синтеза адаптивных децентрализованных регуляторов с идентификатором и эталонной моделью для многоканальных нестойких однонаправленных систем управления с параметрическими и внешними возмущениями. В отличие от большинства известных работ по децентрализованному управлению с модельной координацией рассмотрены локальные многоагентные системы с несколькими входами и несколькими выходами (MIMO-системы). Заданная точность слежения за эталонными моделями обеспечивается при упрощённых требованиях к идентификатору и не связывается с асимптотической точностью выдаваемых оценок параметров. Приведён методический пример.

Методы адаптивного управления движением мобильных машин, предотвращающие потерю устойчивости в условиях чрезвычайных событий. Грузовик. 2010. № 1.

Рассмотрены методы и алгоритмы моделирования чрезвычайных ситуаций при движении мобильных машин, представлены математическая модель создания чрезвычайного события.

Методика планирования и обеспечения оптимальной надёжности инфокоммуникационных систем большой размерности на этапе проектирования. Вестник компьютерных и информационных технологий. 2010. № 1.

Рассмотрено современное состояние проблемы проектирования и оптимизации телекоммуникационных систем с точкой зрения их надёжности. Приведена классификация моделей, способов повышения и оптимизации надёжности. Сформулирован новый подход к оптимизации надёжности современных телекоммуникационных систем с учётом экономических аспектов планирования, поставлена соответствующая задача математического программирования, приведён алгоритм решения задачи. Рассмотрено применение предложенной методики на примере магистральной сети передачи данных.
Представлены результаты исследований эффективности применения новых инструментальных материалов (твердые сплавы и быстрорежущие стали, керамические материалы, сверхтвердые материалы) и износостойких покрытий для высокоскоростного резания.

Приведены различные конструкции режущего инструмента для обработки тел вращения, плоскостей и отверстий, способствующие эффективному использованию режущего инструмента.

В связи с ужесточением экологических требований к смазочно-охлаждающим технологическим средствам рекомендованы альтернативные способы улучшения условий в зоне стружкообразования.

Для конструкторов инструмента, технологов, может быть полезна студентам втузов.